Как-то вечером дети рассматривали рисунки созвездия Большой Медведицы.
—А Полярная звезда где? — вдруг спросил Алька. — На носу или на хвосте Большой Медведицы?
Света не знала, как ответить. Пришлось идти к Папе и спрашивать, где у Большой Медведицы находится Полярная звезда. А Папа сказал:
—Нигде.
—Как это нигде? — не поверили дети.
—Я вам рассказал про одно-единственное созвездие, про Большую Медведицу, а ведь на небе много созвездий. Вот и Полярная звезда находится в другом созвездии — Малая Медведица.
—А ты нам покажешь Малую Медведицу? — спросил Алька.
—Покажу, но найти ее на небе нелегко, потому что в этом созвездии очень мало ярких звезд.
—А ковш в Малой Медведице тоже есть? — спросил Алька.
—Да, — подтвердил Папа. — Но только малый ковш. И как раз на конце ручки этого малого ковша находится Полярная звезда.
Папа нарисовал на бумаге большой ковш, потом Полярную звезду, а затем и малый ковш. В малом ковше четыре звезды он изобразил совсем неяркими, а три, в том числе и Полярную звезду, поярче.
В один из вечеров, когда небо было темное и безоблачное, а звезды яркие, Папа показал детям созвездие Малой Медведицы.
—В старину, — сказал Папа, — казахи называли Полярную звезду колом, а остальные звезды малого ковша — овцами, которые всю ночь бродят на привязи вокруг кола. А индейцы Южной Америки говорили, что Малая Медведица — это обезьянка, которая уцепилась хвостом за Полярную звезду и вращается вокруг нее.
—Папа, это все сказки про Малую Мед-ведицу? — поинтересовался Алька.
—Конечно, — ответил Папа. — Есть еще много других сказок. Например, в одной из них говорится, что в Большую Медведицу могущественная и злая волшебница превратила красивую девушку по имени Каллисто.
—А Малая Медведица — это тоже кто-то заколдованный? — спросил Алик. Созвездие Малой
—Да, — сказал Папа. — В Малую Медведицу злюка превратила служанку Каллисто. С тех пор служанка все время сопровождает свою госпожу. Поэтому на небе Малая Медведица всегда находится рядом с Большой Медведицей.
Даны точки A(-1;5) и B(7;-3). Находим середину отрезка АВ - координаты точки С. С((-1+7)/2=3; (5-3)/2=1) = (3; 1). Точка, яка рівновіддалена від точок A и B находится на срединном перпендикуляре СД к отрезку АВ (Д - точка на оси абсцисс). Угловой коэффициент АВ = Δу/Δх = -8/8 = -1. Тогда угловой коэффициент СД = -1/(-1) = 1. Уравнение СД: у = х + в. Коэффициент в находим, подставив координаты точки С: 1 = 3 + в. в = 1 - 3 = -2. Уравнение СД: у = х - 2. Точка Д имеет у = 0, тогда х = 2.
ответ: координати точки, яка належить осі абсцис і рівновіддалена від точок A(-1;5) i B(7;-3): Д(2; 0).
8, 385 км
15, 03 км