Представим, что на координатной прямой находится точка A. Все точки, лежащие от нее слева, будут принадлежать открытому лучу (-∞; A); точки, лежащие справа, - открытому лучу (A; +∞). Точка A в обоих случаях числовому промежутку не принадлежит, и именно поэтому луч называется открытым. На алгебраическом языке первый открытый луч описывается как x < A (где x - это любое число, меньшее чем A), второй - как x > A (где x - любое число, большее чем A).
Луч отличается от открытого луча лишь тем, что точка входит в числовой промежуток. Обозначается это так (-∞; A] или так [A; +∞); алгебраически: x ≤ A или x ≥ A, то есть x может быть равен A.
Когда изображают числовые промежутки на координатной прямой, то если точка не принадлежит ему (как в случае с открытым лучом), то ее не закрашивают. Если же точка принадлежит числовому промежутку, то закрашивают чёрным цветом.
тогда верно,что c_2=c_1*b;c_3=c_2*b=c_1*b^2 и тд
то есть с_9=с_7*b^2--->25=9*b^2>b=+-sqrt(25/9)=+-(5/3) (sqrt-корень)