Пошаговое объяснение:
''-2y'+5y=sinx y(0)=1 y'(0)=2
1) Общее
y"-2y'+5y=0
Характеристическое уравнение:
K^2-2k+5=0
d=4-20=-16
K1=1+4i; K2=1-4i
Y=e^x (C1 cos2x+C2 sin2x)
2)Частное решение
y=A cosx+ B sinx
y'=(A cosx+B sinx)'=-Asinx+Bcosx
y"=(-Asinx+Bcosx)'=-Acosx-Bsinx
Подставим
-Acosx-Bsinx+2Asinx-2Bcosx+5Acosx+5Bsinx=sinx
(4A-2B)cosx+(4B+2A)sinx=sinx
{4A-2B=0 , 2A+4B=1 {4A-2B=0 , 4A+8B=2 {4A=2B , 4A+8B=2
2B+8B=2
10B=2
B=0,2
A=0,1
y(с изогнутой линией наверху)=0,1cosx+0,2sinx
3)y=Y+y(с изогнутой линией наверху)=e^x (C1 cos2x+C2 sin2x)+0,1cosx+0,2sinx
4) Если все верно, то что-то нужно сделать с этим "y(0)=1 y'(0)=2" условием. Не понимаю что.
73/62
Пошаговое объяснение:
Треугольник, который образовался когда провели биссектрису и высоту - прямоугольный. Т.к. один угол прямоугольного треугольника равен 17 градусам, то второй будет равен 90-17=73
А если имеется в виду треугольник, который был дан изначально, то больший острый угол будет равен 62 градусам. В мелком треугольнике мы нашли второй острый угол. Он смежный с другим углом, равным 180-75=107. В треугольнике, в котором находится этот смежный угол, нам известен еще один, равный 45 градусам (Мы это узнали, когда 90 градусов разделили на два - была биссектриса). Тогда узнать третий угол данного треугольника не сложно - 180-107-45=28 градусов. Итак, мы разобрали два треугольника, которые находятся в основном треугольном. остался третий. Он появился, когда мы провели высоту. Нам известен один угол, равный 45 градусам (он появился из-за биссектрисы). В этом углу содержатся еще два угла, один из которых равен 17 градусам. Посчитаем второй - 45-17=28 градусов. И вот в треугольнике нам известны два угла - один прямой (он был образован биссектрисой), а второй равен 28 градусам. Посчитаем третий угол - 180-90-28=62 градуса. Это и есть второй острый угол основного прямоугольного треугольника. Схему прикрепить не могу, т.к. работаю на компе, надеюсь вы все поняли.