Ну я те скажу в кратце ,хроника это что то рассказывающее о тип фильм поясняющий боевые действия во 2 мировой войне ну или что то связанные с историей это может быть и детектив
Допустим, в какой-то момент малыш Федя обгоняет Соню на ходулях. Отметим это место специальной меткой, как условное начало круга. Как только он обгоняет Соню, он понимает, что (теперь уже) она – впереди него на расстоянии длины круговой дорожки (фактически она почти впритык позади него, но ведь дорожка круговая (!), а значит, Соня, как бы и впереди на расстоянии длины дорожки).
Пускай теперь до нового места встречи Соня пройдёт от метки какую-то часть круговой дорожки, назовём это «кусок дорожки», а малыш Федя до этого нового места встречи проедет на велосипеде целый круг и ещё такую же часть дорожки, т.е. такой же «кусок», как и Соня.
Новое место встречи, таким образом, сместилось от начальной метки на «кусок дорожки».
После второй встречи, Федя опять обгонит Соню и потом опять встретится с ней уже в третий раз со смещением ещё на один «кусок дорожки» от предыдущего места встречи, которое и так уже было смещено от начальной метки на «кусок дорожки», стало быть, третья встреча сместится от начальной метки на «два куска дорожки».
Второе место встречи сместилось от начальной метки на «кусок дорожки», а Федя проехал лишний круг.
Третье место встречи сместилось от начальной метки на «два куска дорожки», а Федя проехал два лишних круга.
Четвёртое место встречи сместится от начальной метки на «три куска дорожки», а Федя проедет три лишних круга.
Пятое место встречи сместится от начальной метки на «четыре куска дорожки», а Федя проедет четыре лишних круга.
Заметим, что если бы Соня к пятому месту встречи, смещённому от начальной метки на «четыре куска дорожки бы целый круг, то тогда Федя проехал бы 4 лишних круга и ещё «четыре куска дорожки», т.е. такое же расстояние, как и Соня, а значит ещё один добавочный круг.
И в таком случае, получилось бы, что Соня один круг, а Федя проехал пять кругов, что как раз и сходится с их соотношением скорости. Всё правильно, Федя ведь ездит в 5 раз быстрее, а значит, он и должен проехать в 5 раз больше, чем проходит Соня!
Значит, наше предположение верно. К пятой встрече Соня проходит полный круг, а стало быть, она приходит к начальной метке, которую мы отметили в месте первой встречи, т.е. место пятой встречи совпадает с местом первой встречи. Дальнейшие встречи станут совпадать со встречами в первом цикле рассуждений. Таким образом, всего существует 4 разных места, где Федя обгоняет Соню.
Так же, эту задачу можно решить и «аналитически», через введение неизвестного параметра скорости, и рассмотрения относительной скорости участников, т.е. скорости сближения.
Пусть скорость Сони равна Тогда скорость Феди равна Когда Федя догоняет Соню, их скорость сближения равна (вычитаем, поскольку Соня уходит от догоняющего её Феди, тем самым, как бы мешая ему себя догонять). Когда Федя в очередной раз обгоняет Соню, его удалённость от Сони, которую он встретит в будущем, в следующем месте обгона, составляет как раз один круг. За время, пока Федя доедет до нового обгона Сони, Соня пройдет по круговой дорожке в 4 раза меньшее расстояние, поскольку её скорость в 4 раза меньше скорости сближения. Из этого и следует, что за время между двумя очередными последовательными встречами, которые разделяют участников движения расстоянием в один круг, Соня проходит только четверть круговой дорожки. Значит за 4 дополнительные встречи (после первой начальной) она и пройдёт полный круг. Т.е. всего существует 4 места, в которых малыш Федя обгоняет Соню на ходулях.
1. Делитель натурального числа (далее нч) - это число, на которое делится нч без остатка. Кратное - это число, получаемое при умножении нч на другое число. Т.е. которое можно поделить на нч без остатка. Например, число 4. 2 - это делитель нч, т.к. 4:2=2. А 16 - это кратное. 16:4=4. 2. При делимости на 10 число должно быть "круглым", т.е. оканчиваться на 0. Например, 70. При делимости на 5 нч должно оканчиваться 0 или 5. Например, 35. На 2 делится любое четное число, то есть заканчивающееся на 0;2;4;6;8. 16;20;38 и прочие. Для деления на 3 и 9 необходимо, чтобы сумма цифр нч давала в результате число, кратное 3 и 9 соответственно. Например, 111 делится на 3, потому что 1+1+1=3. И 222 делится на 3, так как 2+2+2=6, а 6 кратно 3. На 9 делится, например, 630, 6+3+0=9. 882 тоже делится на 9, 8+8+2=18, кратно 9. 3. Простые числа - это числа, делящиеся без остатка только на себя и единицу. Составные - делящиеся без остатка не только на себя и единицу, но и еще на какое-либо число (или числа). Например, 5-простое, а 6-нет, потому что 6:2=3. 4. Это проще показать. Допустим, надо разложить число 6. 6:2=3; 6:3=2. Простые множетили 6 - 2 и 3. Но тут важно помнить простые числа хотя бы до 23, потому что если один из множителей, например, 4, то следует разложить его на 2 и 2 (записав ...2;2). 5. Взаимно простыми называются нч, если они не имеют никаких общих делителей, кроме 1. Например, 45 и 16. 45=(5;3;3), 16=(2;2;2;2), ни один из множителей не совпадает. 6. Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь. Поэтому 2|3 = 4(2*2)|6(3*2) =6|9 и т.п. 7. Чтобы умножить дробь, необходимо увеличить числитель. Чтобы разделить - знаменатель. 2|3 * 2=2*2|3=4|3. 2|3 : 3=2|3*3=2|9. Чтобы умножить дробь на дробь надо числитель первой дроби умножить на числитель второй, знаменатели умножить аналогично. 2|3*4|5=2*4|3*5=8|15 Чтобы разделить дробь на дробь, надо числитель первой дроби умножить на знаменатель второй, а знаменатель - на числитель. 4|5:2|3=4*3|2*5=12|10(=1,2) 8. Два числа, произведение которых равно 1, называют взаимно обратными. Например: 3 и 1|3, т.к. 3*1|3=3|3=1 9. Деление числителя и знаменателя на их общий делитель, отличный от единицы, называют сокращением дроби. Если числитель и знаменатель дроби являются взаимно простыми числами, то такая дробь называется несократимой. 6|9=6:3|9:3=2|3. 10. Для приведения дробей к общему знаменателю надо: 1. найти наименьшее общее кратное знаменателей этих дробей (наименьший общий знаменатель); 2. разделить наименьший общий знаменатель на знаменатели данных дробей, т. е. найти для каждой дроби дополнительный множитель; 3. умножить числитель и знаменатели каждой дроби на ее дополнительный множитель. 1|2 и 2|3. 2 и 3 - простые, значит, НОК=произведению 2 и 3=6. 6:2=3;6:3=2. 1*3|2*3 и 2*2|3*2= 3|6 и 4|6
тип фильм поясняющий боевые действия во 2 мировой войне ну или что то связанные с историей это может быть и детектив