Cos 2x можно выразить только через косинус, или только через синус, или через обе функции. cos 2x = 2cos^2 x - 1 = 1 - 2sin^2 x = cos^2 x - sin^2 x Нас интересует - через синус. 3 - 6sin^2 x - 5sin x + 1 = 0 Умножаем все на -1 6sin^2 x + 5sin x - 4 = 0 Квадратное уравнение относительно синуса D = 5^2 - 4*6(-4) = 25 + 96 = 121 = 11^2 sin x = (-5 - 11)/12 = -16/12 < -1 - не подходит sin x = (-5 + 11)/12 = 6/12 = 1/2 x = pi/6 + 2pi*k x = 5pi/6 + 2pi*k
Пусть Таня съела t конфет, Маша m конфет, а Катя k конфет. Тогда получим систему уравнений: t+m=11 m+k=15 t+k=14
Из первого уравнения t=11-m. Из второго уравнения k=15-m. Подставим эти выражения в третье уравнение: 11-m+(15-m)=14 26-2m=14 26-14=2m 2m=12 m=6 (конфет) - столько конфет съела Маша. Из первого уравнения t=11-m=11-6=5 (конфет) - столько конфет съела Таня. Из второго уравнения k=15-m=15-6=9 (конфет) - столько конфет съела Катя. Тогда общее количество съеденных конфет составит: m+t+k=6+5+9=20 (конфет).
Можно решить задачу проще: просуммируем все три уравнения системы: t+m+m+k+t+k=11+15+14 2t+2m+2k=40 2(t+m+k)=40 t+m+k=40/2=20 (конфет)
cos 2x = 2cos^2 x - 1 = 1 - 2sin^2 x = cos^2 x - sin^2 x
Нас интересует - через синус.
3 - 6sin^2 x - 5sin x + 1 = 0
Умножаем все на -1
6sin^2 x + 5sin x - 4 = 0
Квадратное уравнение относительно синуса
D = 5^2 - 4*6(-4) = 25 + 96 = 121 = 11^2
sin x = (-5 - 11)/12 = -16/12 < -1 - не подходит
sin x = (-5 + 11)/12 = 6/12 = 1/2
x = pi/6 + 2pi*k
x = 5pi/6 + 2pi*k
Отрезку [Pi; 5pi/2] принадлежит корень:
x1 = pi/6 + 2pi = 13pi/6