Для вычисления данного выражения воспользуемся формулой квадрата суммы (a + b)^2 = a^2 - 2 * a * b + b^2:
(сos(15°) + sin(15°))^2 = сos^2(15°) + 2 * сos(15°) * sin(15°) + sin^2(15°) = сos^2(15°) + sin^2(15°) + 2 * сos(15°) * sin(15°).
Используя тригонометрическое тождество cos^2(α) + sin^2(α) = 1, получаем:
сos^2(15°) + sin^2(15°) + 2 * сos(15°) * sin(15°) = 1 + 2 * сos(15°) * sin(15°).
Используя формулу синуса двойного угла, получаем:
1 + 2 * сos(15°) * sin(15°) = 1 + sin(30°).
Используя то, что sin(30°) = 1/2, получаем:
1 + sin(30°) = 1 + 1/2 = 1.5.
ответ: (сos(15°) + sin(15°))^2 = 1.5.
Пошаговое объяснение:
1)Δf=f(x0+Δx)-f(x0)=f(1+0.3)-f(1)=4-3*1.3-(4-3)=4-3.9-1=-0.9
2)Δf=0.5(-2+0.8)^2-0.5*(-2)^2=0.72-2=-1.28