Пошаговое объяснение:
Площадь боковой поверхности конуса равна произведению числа π на радиус окружности основания и на длину образующей конуса.
Формула площади боковой поверхности конуса: S=πrl
где r - радиус окружности основания,
l - длина образующей конуса.
Площадь полной поверхности конуса равна сумме площадей основания конуса и его боковой поверхности.Основанием конуса является круг.
Формула площади полной поверхности конуса: S=πrl+πr²
где r - радиус окружности основания,
l - длина образующей конуса.
Формула объёма конуса : V=πr²h/3
где r - радиус окружности основания,
l - длина образующей конуса,
h - высота конуса.
Высота конуса равна высоте прямоугольного треугольника, опущенной из прямого угла, и катет которого равен образующей конуса l.
То есть h=√2/2 l=√2/2 ×20=10√2
Радиус основания конуса r равен высоте конуса h как катеты равнобедренного треугольника.
Таким образом,
Полная поверхность конуса:
S=π×10√2(10√2+20)=100√2(√2+2)п
Объём конуса:
V= п×200×10√2/3=2000√2 п/3
cм. рис.
Пошаговое объяснение:
кубическая парабола, снизу-вверх.
Взять производную,
исследовать f'(x) на f'(x) < 0, f'(x) > 0
определить экстремумы.
f'(x) = 3x² - 5x - 2
f'(x) = 0 при
3x² - 5x - 2 = 0
D = 25 - 4 * 3 * (-2) = 49 - 7²
x1 = (5-7) / 6 = -1/3
x2 = (5+7) / 6 = 2
f'(x) = 3x² - 5x - 2 (роги вверх => меньше нуля - между корнями)
f'(x) < 0 при x ∈ (-1/3; 2) => f(x) убывает
f'(x) > 0 при x ∈ (-∞; -1/3) ∪ (2; +∞) => f(x) возрастает
х1 - точка максимума
х2 -точка минимума
f(-1/3) = (-1/27) - (5/2)*1/9 - 2*(-1/3) + 3/2 = -1/27 - 5/18 + 2/3 + 3/2 =
= -1/27 + (-5 + 12 +27)/18 = -1/(9*3) + 34/(9*2) = (-2+102) / (9*3*2) =
= 100/54 = (почти 2)
f(2) = 8 - 10 - 4 + 3/2 = -4,5
f(0) = 3/2
дальше строим график, если руками - то считаем точки и соединяем плавной кривой.
примерно представив график можно проверить нули функции:
f(-1) = 0
f(1/2) = 0
f(3) = 0