Пошаговое объяснение:1) f(x)= 2x²-3x+1 , [-1;1] ⇒ f'(x)= 4x-3, найдём критические точки: 4х-3=0, ⇒ х = 3/4=0,75 ∈[-1;1]. Найдём значения функции в критической точке и на концах данного промежутка: f(3/4)= 2·(3/4)²- 3·3/4 +1 =9/8 -9/4 + 1 = -1/8 ; f(1) = 0; f(-1)=6 ⇒ max f(x)=f(-1)=6; minf(x)=f(3/4)=-1/8
2)f(x)=3x²-4 на [2;4] ⇒ f'(x)=6x 6x=0, x=0-крит. точка, но x=0∉ [2;4] ⇒ Найдём значения функции на концах данного промежутка: f(2)= 3·2²-4= 12-4=8 f(4)=3·4² - 4= 48-4=44 ⇒ max f(x)=f(-4)=44; minf(x)=f(2)=8 3)f(x)=x²-1 на [0;3]⇒ f'(x)=2x , 2x=0 x=0 -критическая точка х=0 ∈ [0;3]. Найдём значения функции в критической точке и на концах данного промежутка: f(0) =0²-1=-1; f(3)=3²-1=8 ⇒max f(x)=f(3)=8; minf(x)=f(0)= -1
ответ:а) раскрываем скобки
1.8-0.3x-0.5+x >11
0.7x > 11-1.8+0.5
0.7x > 9.7
x > 13.85
ответ x=14 - целое и удовлетворяет условию
б)
0,8-3,2x+1+3x <26
-0.2x<26-0.8-1
-0.2x < 24.2
x> 24.2 / 0.2
x>121
ответ x=122 - наименьшее целое, удовлетворяющее неравенству
976
а) выражаем в первом неравенстве x>5/b^2
во втором неравенстве x>5/b^2, то же самое
=> b (-бесконечность; + бесконечность)
б) выражаем в первом неравенстве x<2/b^3
во втором неравенстве x>2/b^3, противоречие первому неравенству
область решения неравенства не существует, ответ: нет решения
в) выражаем в первом неравенстве bx>8+3x; bx-3x>8; x(b-3)>8; x> 8/(b-3)
во втором неравенстве x>8/(b-3), то же самое
=> b (-бесконечность; + бесконечность)
Пошаговое объяснение:
2) 200:20=10 (%)- вероятность того, что взятая наугад деталь юракованная