М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
lilia25021
lilia25021
04.03.2020 14:22 •  Математика

Сумма двух последовательных натуральных чисел равна 133 найдите произведение этих чисел

👇
Ответ:
aabeldinova
aabeldinova
04.03.2020
Два последовательных натуральных числа имеют вид:  n  и (n+1) .
 Их сумма равна  n+(n+1)=133  
                              2n+1=133
                              2n=132
                                n=66
 Эти числа равны    66  и  67.
4,7(82 оценок)
Открыть все ответы
Ответ:
kotyaraasm
kotyaraasm
04.03.2020

ответ: a) tgα=-4/3    Б)  

Пошаговое объяснение:А) Cosα=-0,6     90°<α<180° (2 четверть);  1+tg²α=1/Cos²α ⇒ tg²α= 1/Cos²α  -1 = 1/(-0,6)²  - 1=  1/0,36 - 1= 100/36 - 1= 25/9 - 1= 25/9 - 9/9= 16/9, ⇒ tgα=±√√16/9=±4/3

Но 90°<α<180°, во 2 четверти tgα<0, значит tgα=-4/3

Б) sinα,cosα, tgα, ctgα, если sinα=12/13 при п/2 (условие некорректно записано)

Если Sinα= 12/13, то Сos²α=1- Sin²α= 1- (12/13)²=1- 144/169= 25/169   Значит Cosα=±√25/169= ±5/13

Если π/2 <α<π , то Сosα<0, значит Cosα=-5/13;  

tgα=Sinα/Cosα = 12/13 : (-5/13)= - 12/5 =-2,4

ctgα=1/tgα= 1: (-12/5)= - 5/12

4,4(69 оценок)
Ответ:
евгений258
евгений258
04.03.2020

Математика зародилась и активно развивалась у Древних Шумеров в междуречье, на месте будущей Персии и современного Ирака, одной из самой древнейшей из известных антропологам Цивилизаций вместе с Анатолийскими и Шумерскими языками, которые позже породили все европейские языки.

Примерно 6 000 лет назад (4 000 лет до Нашей Эры) шумеры уже использовали натуральные числа (1,2,3,4,5,6...) и действие сложения.

Позже стало использоваться и действие вычитания, как обратное сложению. Правда, у Шумеров не использовалось вычитание больших чисел из маленьких. Операция 3–7 считалась бессмысленной, поскольку не приводила ни к какому натуральному результату.

Примерно 5 000 лет назад (3 000 лет до Нашей Эры) в обиход стали входить действие умножения и деления. Эти действия, как и ранее, производились только над натуральными числами.

Не найдено никаких доказательств того, что у Шумеров была какая-то более менее цельная последовательная школа изучения математики. Знания и навыки оперирования арифметическими действиями передавались из уст в уста. Сама математика использовалась в торгово-менных операциях и в наблюдениях за периодичностью смены дней и лет. Ещё не было ни алгебры, ни механики.

Примерно 5 000 лет назад (3 000 лет до Нашей Эры) математические знания рас по всему аравийскому полуострову и набирающему силу Древнему Египту.

В Египте математические знания получили систематизацию. В обиход были введены дробные положительные числа. Примерно 3 500 лет назад (1 500 лет до Нашей Эры) появились первые упоминания об отрицательных числах в долговых обязательствах.

Четыре основные арифметические действия были известны, таким образом, уже 3 500–6 000 лет. Однако тогда эти действия обозначались словами, союзами или какими-то местными знаками, у разных народов по-разному.

Сам знак плюс «+» вошёл в обиход во времена раннего Возрождения, примерно в XV–XVI веке после опубликования работ известного математика-систематизатора и логика Франсуа Виета. Тогда же вошёл в употребление из знак тире «–» в качестве знака вычитания.

Знак умножения в виде диагонального креста «х» – использовался в английской математической школе в XV–XVII в.в. и тогда же получил рас Знак умножения в виде точки – использовался в немецкой математической школе в XV–XVII в.в., в частности на нём активно настаивал Лейбниц, как на общепризнанном математическом знаке.

Знак умножение в виде точки долгое время оставался только в высшей алгебре. В арифметике же во всём мире, включая и СССР, до 1940 года использовался знак диагонального креста «х», т.е. 2 умножить на 3 – записывалось, как « 2 х 3 ».

В послевоенные годы в СССР в школах стал активно использоваться знак Лейбница. Трудно сказать, произошло ли это из-за более высокого уровня преподавания математики и более частого обращения преподавателей к работам Лейбница или в силу банальной экономии карандашей, но уже в 50-е годы, большинство книг по арифметике для начальных классов, издаваемых в СССР, публиковались со знаком умножения Лейбница в виде точки.

В 60-е годы в средней школе во всех странах Мира постепенно перешли к обозначению умножения знаком Лейбница в виде точки. Исключением осталась Великобритания, в школах которой и по сей день умножение обозначается крестом.

Всё тоже самое можно сказать и о знаке деления. Косая или прямая черта – это английская школа. Двоеточие – это обозначение Лейбница. Позже в XVIII в. в английской школе было введено компромиссное обозначение деления в виде двоеточие с разделительной чертой « ÷ » .

Пошаговое объяснение:

4,4(86 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ