ответ:
Решение как всегда начнем с анализа типа дифференциального уравнения. Данное уравнение попадает под определение ДУ первого порядка с разделяющимися переменными. А значит, начнем действовать по алгоритму решения. Распишем подробно:
y
′
=
d
y
d
x
Далее разделим обе части уравнения на произведение двух функций:
y
(
x
2
+
9
)
Получаем:
d
y
y
=
4
x
d
x
x
2
+
9
Возьмем интеграл от обеих частей последнего равенства:
∫
d
y
y
=
∫
4
x
d
x
x
2
+
9
Используя формулы и методы интегрирования, получаем:
ln
|
y
|
=
2
∫
d
(
x
2
+
9
)
x
2
+
9
ln
|
y
|
=
2
ln
|
x
2
+
9
|
+
C
Общее решение:
y
=
C
⋅
(
x
2
+
9
)
2
,
C
=
c
o
n
s
t
Как видим ответ легко получен и записан в последней строчке.
Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!
ответ
y
=
C
⋅
(
x
2
+
9
)
2
,
C
=
c
o
n
s
t
Пошаговое объяснение:
7/3= 2 1/3
13/10= 1 3/10
147/100= 1 47/100
11/4= 2 3/4
123/100= 1 23/100
14/7= 2
13/2= 6 1/2
4/5= 9 1/5
21/10= 2 1/10