М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
mtrololo09
mtrololo09
12.02.2020 09:44 •  Математика

Найди значение выражения а-6/а+6 при а= -5

👇
Ответ:
Savcik
Savcik
12.02.2020

а-6/а+6=-5-6/-5+6=-11/1=-11

4,6(97 оценок)
Ответ:
Котоман228
Котоман228
12.02.2020

Відповідь:

-11

Покрокове пояснення:

-5-6/-5+6

-11/1= -11

4,5(19 оценок)
Открыть все ответы
Ответ:
inga50
inga50
12.02.2020
Рассмотри вычисления в строчку и в столбик.     
13х54=13х(50+4)=13х50+13х4=
Что общего в этих вычислениях?
1) общий первый множитель (число 13)
2) одинаковые результат (число 702)

Чем они различаются?
1) второй множитель (54) во втором и третьем примере по разному предоставлен в виде разрядных слагаемых (54=50+4).
2) первый пример (13х54=702) решается в одно действие; второй  - в два (13х(50+4) = 13*54=792); третий - в три действия (13х50 (первое действие умножение)+13х4 = 650 + 13х4 (второе действие умножение) = 650+52 (третье действия сумма двух произведений)=702)
4,5(23 оценок)
Ответ:
nik19991
nik19991
12.02.2020

Приведем примерный алгоритм получения необходимых данных.

1.Нахождение области определения функции

Определение интервалов, на которых функция существует.

!!! Очень подробно об области определения функций и примеры нахождения области определения тут.

2.Нули функции

Для вычисления нулей функции, необходимо приравнять заданную функцию к нулю и решить полученное уравнение. На графике это точки пересечения с осью ОХ.

3.Четность, нечетность функции

Функция четная, если y(-x) = y(x). Функция нечетная, если y(-x) = -y(x). Если функция четная – график функции симметричен относительно оси ординат (OY). Если функция нечетная – график функции симметричен относительно начала координат.  

4.Промежутки знакопостоянства

Расстановка знаков на каждом из интервалов области определения. Функция положительна на интервале - график расположен выше оси абсцисс. Функция отрицательна - график ниже оси абсцисс.  

5. Промежутки возрастания и убывания функции.

Для определения вычисляем первую производную, приравниваем ее к нулю. Полученные нули и точки области определения выносим на числовую прямую. Для каждого интервала определяем знак производной. Производная положительна - график функции возрастает, отрицательна - убывает.

6. Выпуклость, вогнутость.

Вычисляем вторую производную. Находим значения, в которых вторая производная равна нулю или не существует. Вторая производная положительна - график функции выпукл вверх. Отрицательна - график функции выпукл вниз.  

7. Наклонные асимптоты.

 

Пример исследования функции и построения графика №1

Исследовать функцию средствами дифференциального исчисления и построить ее график.

4,4(67 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ