Будем считать, что дано такое уравнение (√5 - 1)/ log(х, 10) = 4lg ( х/√10).
Поменяем ролями основание и аргумент логарифма левой части, а в правой части логарифм дроби заменим разностью логарифмов.
(√5 - 1) * log(10, х) = 4(lоg (10, х) - log(10, 10^(1/2))),
(√5 - 1) * log(10, х) = 4(lоg (10, х) - (1/2)).
(√5 - 1) * log(10, х) = 4lоg (10, х) - 2. Вынесем общий множитель.
(4 - √5 + 1) * log(10,х) = 2. Заменим 2 на log(10, 100).
(5 - √5) * log(10,х) = log(10, 100).
Получаем при равных основаниях:
x^(5 - √5) = 100.
ответ: х = 100^(1/(5 - √5)) ≈ 5,29184. Корень один.
x³>-8
x>-2
D(Y) =(-2; +∞).
2) Под знаком корня (если это квадратный корень) должно стоять неотрицательное выражение. Решаем неравенство (х-1)(3х+6)≥0
3(х-1)(х+2)≥0
Метод интервалов.
-21
знаки + - +
ответ; D(y)=(-∞;-2]∪[1;+∞).