Как доказать тождество?
Чтобы доказать тождество нужно доказать, что его правая и левая части равны, т.е. свести его к виду «выражение» = «такое же выражение».
В случаях, когда тождество не содержит переменных и иррациональности, можно вычислить правую и левую части.
Пример. Доказать тождество
(
2
,
5
+
5
⋅
6
15
)
2
=
22
−
1
,
75
.
(
2
,
5
+
5
⋅
6
15
)
2
=
22
−
1
,
75
(
2
,
5
+
6
3
)
2
=
20
,
25
(
2
,
5
+
2
)
2
=
20
,
25
(
4
,
5
)
2
=
20
,
25
20
,
25
=
20
,
25
Тождество доказано.
В более сложных случаях, доказывая тождество, приходится прибегать к преобразованиям, потому что посчитать «в лоб» уже нельзя. При этом можно:
Преобразовывать обе части одновременно (как в примере выше).
Преобразовывать только левую или только правую часть.
Переносить слагаемые через равно, меняя знак.
Умножать левую и правую часть на одно и то же число.
Использовать все математические правила и формулы (формулы сокращенного умножения, свойства степени, правила работы с дробями и разложения на множители и так далее и тому подобное). Именно пятый пункт при доказательстве тождеств используется чаще всего, поэтому все эти свойства и правила нужно знать, помнить и уметь использовать.
Пример. Доказать тождество
(
a
+
b
)
2
+
(
a
−
b
)
2
=
2
(
a
2
+
b
2
)
.
(
a
+
b
)
2
+
(
a
−
b
)
2
=
2
(
a
2
+
b
2
)
Работаем с левой частью, не трогая правую.
С формул сокращенного умножения раскроем скобки слева,…
a
2
+
2
a
b
+
b
2
+
a
2
−
2
a
b
+
b
2
=
2
(
a
2
+
b
2
)
…затем приводим подобные слагаемые,…
2
a
2
+
2
b
2
=
2
(
a
2
+
b
2
)
…после чего вынесем за скобку двойку.
2
(
a
2
+
b
2
)
=
2
(
a
2
+
b
2
)
Обе части равны - тождество доказано
Пример. Доказать тождество
x
2
+
1
x
2
=
(
x
+
1
x
)
2
−
2
.
x
2
+
1
x
2
=
(
x
+
1
x
)
2
−
2
Преобразуем правую часть, не трогая левую.
Раскроем скобки с формулы квадрата суммы,…
x
2
+
1
x
2
=
x
2
+
2
x
⋅
1
x
+
1
x
2
−
2
…у одно из слагаемых, сократив
x
и
1
x
, …
x
2
+
1
x
2
=
x
2
+
2
+
1
x
2
−
2
… и приводим подобные слагаемые (
2
и
−
2
).
x
2
+
1
x
2
=
x
2
+
1
x
2
Слева и справа одинаковые выражения, значит тождество доказано.
ВОТ ТЕ ПОДСКАЗКА КАК ДЕЛАТЬ)))
Пошаговое объяснение:
Объем выборки - количество элементов в выборке.
Размах выборки – разность между максимальным и минимальным значениями элементов выборки.
Среднее арифметическое ряда чисел – это частное от деления суммы этих чисел на их количество (объем выборки).
Мода ряда чисел - число, наиболее часто встречающееся в данном ряду.
Медианаупорядоченного ряда чисел с нечетным числом членов - число, которое окажется посередине.
Медиана упорядоченного ряда чисел с четным числом членов - среднее арифметическое двух чисел, записанных посередине.
Частота - число повторений определенного значения параметра в выборке.
Относительная частота – это отношение частоты к общему числу данных в ряду.
Для наглядности удобно представлять данные в виде соответствующих диаграмм/графиков
ЭЛЕМЕНТЫ СТАТИСТИКИ. КОРОТКО О ГЛАВНОМ.
Статистическая выборка - выбранное из всего числа объектов конкретное число объектов для исследования.
Объемом выборки - количество элементов , попавших в выборку.
Размах выборки - разность между максимальным и минимальным значениями элементов выборки.
Среднее арифметическое ряда чисел – это частное от деления суммы этих чисел на их количество (n)(n)
Модой ряда чисел называется число, наиболее часто встречающееся в данном ряду.
Медианой ряда чисел с четным числом членов называется среднее арифметическое двух чисел, записанных посередине, если этот ряд упорядочить.
Частота представляет собой число повторений, сколько раз за какой-то период происходило некоторое событие, проявлялось определенное свойство объекта либо наблюдаемый параметр достигал данной величины.
Относительная частота – это отношение частоты к общему числу данных в ряду.
Y = -6x² + x + 1
РЕШЕНИЕ
Сразу - точки для построения графика
Y(-3) = -56, Y(-2) = -25 Y(-1) = -6 Y(0) = 1 Y(1) = -4 Y(2) = - 21 Y(3)= -50.
1. Область определения - все числа Х⊂ R.
2 Корни - пересечение с осью Х - х1 = - 1/3 и х2 = 1/2
3. Выпуклость - первая производная - Y' = -12X + 1
Точка экстремума Х= 1/12 = 0,083
Убывает при х ⊂ [1/12 ;+∞)
Значение максимума Y(1/12) = 1.042
Возрастает при х ⊂ (-∞; 1/12]
4 Плавность - вторая производная = Y" = -12
перегибов нет. Во всем диапазоне - выпуклая.