всего 576 таких чисел.
1) обозначим первую цифру через x, она не может быть нулем, поэтому возможно 9 вариантов выбора
2) другую цифру обозначим через y, ее тоже можно выбирать она может быть нулем, но не может быть равна x)
3) нужно отдельно рассмотреть три случая: xy··, xxy· и xxx·; для каждого из этих случаев нужно подсчитать количество вариантов и эти числа сложить
4)в варианте xy·· две последних цифры могут быть (независимо друг от друга) выбраны равными x или y (по 2 варианта выбора)
поэтому всего получаем 9·9·2·2 = 324 варианта
5)в варианте xxy· последняя цифра может быть равна только x или y (2 варианта)
поэтому всего получаем 9·1·9·2 = 162 варианта
6)в варианте xxx· последняя цифра может быть любой (10 вариантов)
поэтому всего получаем 9·1·1·10 = 90 вариантов
7) общее количество вариантов равно сумме
324 + 162 + 90 = 576
Всю эту работу можно нарисовать с таблицы, но если нужен просто ответ- то 576 чисел
это задание уже было сегодня
1) 2tg^2(x)+3tg(x)-2=0
tg(x)=t
2tg^2(t)+3t-2=0
D=b^2-4ac=25
t1,2=(-b±√D)/2a
t1=-2
t2=0,5
a) tg(x)=-2 => x=arctg(-2)+pi*n
б) tg(x)=0,5) => x=arctg(0,5)+pi*n
4) cos(2x)=2cos(x)-1
2cos^2(x)-1`=2cos(x)-1
2cos^2(x)-2cos(x)=0
2cos(x)*(cos(x)-1)=0
a) cos(x)=0 => (pi/2)+pi*n
б) cos(x)-1=0 => cos(x)=1 => (pi/2)+2pi*n
6) sin(7x)-sin(x)=cos(4x)
2sin(3x/2)*cos(4x)=cos(4x)
2sin(3x/2)*cos(4x)-cos(4x)=0
cos(4x)*(2sin(3x/2)-1)=0
a) cos(4x)=0 => 4x=(pi/2)+pi*n => x=(pi/8)+pi*n/4
б) 2sin(3x/2)-1=0 => 2sin(3x/2)=1 => sin(3x/2)=1/2 => 3x/2=(pi/6)+pi*n =>
3x=(pi/3)+2*pi*n => x=(pi/9) +2*pi*n/3