Найдём диаметр окружности, он равен сумме АН и ВН: d=AH+BH=9,6+5,4=15 Зная диаметр можем найти радиус: r=d/2=7,5 Рассмотрим треугольник ОСН. Этот треугольник прямоугольный так как хорда CD пересекает диаметр под прямым углом. Точка О - центр окружности, угол ОНС - прямой, сторона ОС - радиус окружности. Найдём длину стороны ОН. ОН=ОВ-ВН ОВ=7,5 - радиус окружности, а ВН=5,4 ОН=7,5-5,4=2,1 Теперь по теореме Пифагора можем найти СН СН²=ОС²+ОН² СН²=7,5²+2,1²=56,25+4,41=60,66 СН=√60,66=√9*6,74=3√6,74 Так как хорда пересекает диаметр под прямым углом, то СН=НD, следовательно CD=2CH=2*3√6,74=6√6,74
2) 540÷90=6
3) 6×8=48
4) 9×9=81
5) 9-6=3
6) 3+42=45