№1.
Пусть дочери х (лет), тогда отцу 8х (лет). Разница в возрасте 28 лет. Составим уравнение:
1) 8х - х = 28
7х = 28
х = 28 : 7
х = 4 (года - дочери)
2) 4 * 8 = 32 года - отцу - ответ.
№2.
Сыну х (лет), тогда матери 6х (лет). Разница 25 лет
1) 6х - х = 25
5х = 25
х = 25 : 5
х = 5 (лет - сыну)
2) 5 * 6 = 30 лет - матери - ответ.
№1.
х - задуманное число
(х + 28) - увеличили число на 28
3х - число увеличилось в 3 раза
х + 28 = 3х
х - 3х = - 28
- 2х = - 28
х = (- 28) : (- 2)
х = 14 - само число.
№2.
х - задуманное число
(х + 35) - увеличили на 35
6х - увеличилось в 6 раз
х + 35 = 6х
х - 6х = 35
- 5х = - 35
х = (- 35) : (- 5)
х = 7 - задуманное число.
Так вы уже решили, получается. 12 это точка минимума. Значение функции y в точке 12 равно 62. Это и есть ответ.
y = 2x + 288/x + 14.
y' = 2 - 288/x²
y' = 0 ⇔ (2x² - 288)/x^2 = 0 ⇒ x ≠ 0
x² - 144 = 0
x = ± 12
Расставив точки на прямой, найдем значение производной в точке 1. Производная отрицательна, значит производная убывает на промежутке от -12 до 12. На остальных промежутках возрастает. Значит, 12 - точка минимума. Т.к наименьшее значение требуется искать на промежутке [0.5;25], то она подходит. При x = 12:
y = 24 + 288/12 + 14 = 24 + 12*12*2/12 + 14 = 24 + 12*2 + 14 = 24+24+14 = 62.
При x = 1/2:
y = 1 + 576 + 14 = 591
При x = 25:
y = 50 + 288/25 + 14 = 64 + 11 13/25 = 75 13/25 (семьдесят пять целых, тринадцать двадцать пятых)
180:3=60
60-18=42
ответ:1 мешок 60 кг ,2 мешок 42 кг, 3 мешок 60 кг