ответ: 17,3 кв.см
пошаговое объяснение:
по известному свойству трапеции треугольники bce и ade равновелики. поэтому найдем площадь треугольника ade.
поскольку углы dab и adc являются внутренними односторонними углами при параллельных прямых ab и dc, то их сумма равна 180º, поэтому
∠adc = 180º - ∠dab = 180º - 60º = 120º.
по теореме косинусов
ac^2 = 3^2 + (24)^2 - 2*3*24*cos 120º = 9 + 576 + 72 = 657 (кв. см), ac = √657 = 3√73 (см).
треугольники abe и cde подобны, поскольку углы aeb и ced равны как вертикальные, а углы eab и ecd равны как внутренние накрест лежащие при параллельных прямых ab и cd. поэтому соответственные стороны ae и ec этих треугольников относятся друг к другу как основания ab и cd, то есть
ae/ec = ab/cd = 30/24 = 5/4.
поскольку ae + ec = ac, то точка e делит отрезок ac в указанном выше отношении, то есть ae = (5/(4 + 5))*ac = (5/9)*ac.
находим площадь треугольника adc. воспользуемся для этого формулой герона, полагая a = dc = 24 см, b = ac = 3√73 см, c = ad = 3 см, тогда полупериметр треугольника
p = (a + b + c)/2 = 13,5 + 1,5*√73 (см),
а его площадь
s(adc) = √(p*(p - a)*(p - b)*(p -c)) = √((13,5 + 1,5*√73)*(1,5*√73 - 10,5)*(13,5 - 1,5*√73)*(10,5 + 1,5*√73)) (кв. см).
поскольку треугольники adc и ade имеют одинаковую высоту, а основание треугольника ade (отрезок ae) составляет 5/9 основания треугольника adc (отрезка ac), то площадь треугольника ade
s(ade) = (5/9)*s(adc) = (5/9)*√((13,5 + 1,5*√73)*(1,5*√73 - 10,5)*(13,5 - 1,5*√73)*(10,5 + 1,5*√
что приблизительно равно
0,5556*√(26,316*2,316*0,684*23,316) = 17,3 (кв. см).
следовательно, и площадь треугольника bce приблизительно равна 17,3 кв. см.
ответ: приблизительно 17,3 кв. см.
dogmiroslava
14.02.2016
Алгебра
5 - 9 классы
+12 б.
ответ дан
Найдите область определения функции
а) y=√5x-4x^2 (всё выражение под квадрат. корнем)
б) y=√x^2+2x-80 (под квадрат. корнем) /3x-36
ОЧЕНЬ
2
ПОСМОТРЕТЬ ОТВЕТЫ
ответ, проверенный экспертом
5,0/5
0
axatar
главный мозг
2.4 тыс. ответов
548.5 тыс. пользователей, получивших
а) x∈[0; 1,25]
б) x∈(-∞; -10]∪[8; 12)∪(12; +∞)
Объяснение:
а)
Область определения функции:
подкоренное выражение должен быть неотрицательным
5·x-4·x²≥0
x·(5-4·x)≥0
Нули левой части неравенства
х=0 и 5-4·x=0 или х=0 и x=5/4=1,25
Применим метод интервалов
x·(5-4·x): - + -
-∞ -1 [0] 1 [1,25] 100 > +∞
То есть
при х= -1 : -1·(5-4·(-1)) = -1·(5+4) = -1·9 = -9<0
при х= 1 : 1·(5-4·1) = 1·(5-4) = 1·1 =1>0
при х= 100 : 100·(5-4·100)) = 100·(5-400) = 100·(-395) =-39500<0
ответ: x∈[0; 1,25]
б)
Область определения функции:
1) подкоренное выражение должен быть неотрицательным
x² + 2·x - 80≥0
Левую часть разложим на множители, для этого решаем как квадратное уравнение
D= 2²-4·1·(-80)=4+320=324=18²
x₁=(-2-18)/2= -20/2 = -10
x₂=(-2+18)/2= 16/2 = 8
(x - (-10))·(x-8)≥0
Нули левой части неравенства - это корни квадратного уравнения.
Применим метод интервалов
(x+10)·(x-8): + - +
-∞ -100 [-10] 0 [8] 100 > +∞
То есть
при х= -100: (-100+10)·(-100-8)) = -90·(-108) = 90·108 >0
при х= 0 : (0+10)·(-8)) = 10·(-8) = -80 <0
при х= 100 : (100+10)·(100-8)) = 110·92 >0
ответ: x∈(-∞; -10]∪[8; +∞)
2) знаменатель не должен быть нулем
3·x-36≠0 или 3·x≠36 или x≠12.
Тогда ответ: x∈(-∞; -10]∪[8; 12)∪(12; +∞)
8(2c+3b)
6(5m+7n)
12(4x+5y)
9(2a+3b)
не выносится
7(7m+3n)
5(3m+5n)
находишь общий множитель и выносишь его