вероятность того, что первый выйдет на одном из 8-ми этажей равна 1.
вероятность того, что второй выйдет на одном из 8-ми этажей, кроме того, на котором вышел первый, равна 7/8.
вероятность того, что третий выйдет на одном из 8-ми этажей, кроме того, на котором вышел первый и второй равна 6/8.
вероятность того, что четвертый выйдет на одном из 8-ми этажей, кроме того, на котором вышел первый, второй и третий, равна 5/8.
тогда вероятность того, что все они вышли на разных этажах, равна 1*7/8*6/8*5/8=210/256=105/128.
вероятность одного попадания в цель при одном залпе из двух орудий равна р1,2=р1*р2.
0,38=р1*08.
р1=0,38/0,8=19/40=0,475.
Изучая обыкновенные дроби, мы говорили про их сокращение. Сокращением обыкновенной дроби мы назвали деление ее числителя и знаменателя на общий множитель. Например, обыкновенную дробь 30/54 можно сократить на 6 (то есть, разделить на 6 ее числитель и знаменатель), что приведет нас к дроби 5/9.
Под сокращением алгебраической дроби понимают аналогичное действие. Сократить алгебраическую дробь – это значит разделить ее числитель и знаменатель на общий множитель. Но если общим множителем числителя и знаменателя обыкновенной дроби может быть только число, то общим множителем числителя и знаменателя алгебраической дроби может быть многочлен, в частности, одночлен или число.
Например, алгебраическую дробь можно сократить на число 3, что даст дробь . Также можно выполнить сокращение на переменную x, что приведет к выражению . Исходную алгебраическую дробь можно подвергнуть сокращению на одночлен 3·x, а также на любой из многочленов x+2·y, 3·x+6·y, x2+2·x·y или 3·x2+6·x·y.
Конечная цель сокращения алгебраической дроби состоит в получении дроби более простого вида, в лучшем случае – несократимой дроби