Пусть дан прямоугольный треугольник АВС с прямым углом А,тогда
высота прямоугольного треугольника ВН,проведённая к гипотенузе ВС,есть среднее пропорциональное между проекциями катетов на гипотенузу,т.е. АН= корню квадратному из ВН*НС=12(см)
тогда рассмотрим треугольник ВАН (прямоугольный, с прямым углом ВНА), и по теореме Пифагора получаем, что ВА в квадрате=ВНквадрат+НАквадрат
ВА квадрат=9 в квадрате+12 в квадрате, ВА квадрат=81+144=225=>
ВА=корень квадратный из 225,ВА=15 (см_)
тогда берём первоначальный треугольник АВС и по теореме Пифагора находим катет АС,
АС квадрат=ВС квадрат-ВА квадрат,ВС=ВН+НС=9+16=25(см)
АС квадрат= 25 в квадрате-15 в квадрате
АС квадрат=625-225=400
АС=корень квадратный из 400=20(см)
ответ:20 см и 15 см
Пошаговое объяснение:
Відповідь:
1) 10•10 = 100 плиток образовали бы квадрат, если бы плиток хватило. Поскольку их не хватило, то плиток меньше 100.
2) В неполном ряду плиток при раскладывании по 8 не может быть 8 (это уже полный ряд), а в неполном ряду плиток при раскладывании по 9 не может быть 0 плиток (это значит, что нет неполного ряда), а это означает, что в неполном ряду плиток при раскладывании по 8 плиток может быть только 7, а в неполном ряду плиток при раскладывании по 9 может быть только 1 плитка. Разница как раз составляет 6 плиток, как указано в условии.
3) Представим себе, что есть n полных рядов плиток при раскладывании их по 8, и есть 7 плиток в неполном ряду. Можно перекладывать из неполного ряда по одной плитке к каждому ряду, так, что в каждом ряду образуется по 9 плиток. Так можно делать до тех пор, пока в неполном ряду не останется 1 плитка:
Получаем уравнение
8n + 7 = 9n + 1
9n - 8n = 7 - 1
n = 6 рядов по 8 или по 9 плиток.
4) 8n+7 = 8•6+7=47+7=55 плиток.
Или
9n+1 = 9•6+1=54+1=55 плиток.
ответ: 55 плиток.
Покрокове пояснення: