3
Пошаговое объяснение:
Проверим каждое из утверждений.
1) «Если в параллелограмме две стороны равны, то такой параллелограмм является ромбом» — неверно, поскольку у любого параллелограмма противоположные стороны равны, однако он не обязан быть ромбом. Правильно утверждение: параллелограмм является ромбом, только если смежные стороны равны.
2) «Если в четырёхугольнике две диагонали равны и перпендикулярны, то такой четырёхугольник — квадрат» — неверно, поскольку существуют четырёхугольники с равными взаимно перпендикулярными диагоналями, но не являющиеся квадратами. Правильное утверждение: Если в четырёхугольнике две диагонали равны и перпендикулярны и точкой пересечения делятся пополам, то такой четырёхугольник — квадрат.
3) «Если в ромбе диагонали равны, то такой ромб является квадратом» — верно.
4) «Углы при меньшем основании трапеции тупые» — неверно, например, у прямоугольной трапеции только один угол при меньшем основании тупой.
3
Пошаговое объяснение:
1) «Если в параллелограмме две стороны равны, то такой параллелограмм является ромбом» — неверно, поскольку у любого параллелограмма противоположные стороны равны, однако он не обязан быть ромбом. Правильно утверждение: параллелограмм является ромбом, только если смежные стороны равны.
2) «Если в четырёхугольнике две диагонали равны и перпендикулярны, то такой четырёхугольник — квадрат» — неверно, поскольку существуют четырёхугольники с равными взаимно перпендикулярными диагоналями, но не являющиеся квадратами. Правильное утверждение: Если в четырёхугольнике две диагонали равны и перпендикулярны и точкой пересечения делятся пополам, то такой четырёхугольник — квадрат.
3) «Если в ромбе диагонали равны, то такой ромб является квадратом» — верно.
4) «Углы при меньшем основании трапеции тупые» — неверно, например, у прямоугольной трапеции только один угол при меньшем основании тупой.
Подробнее - на -
Пусть в книге х страниц, тогда:
0,2х + 8 страниц - прочитано в первый день
х - (0,2х + 8) = х - 0,2х - 8 = (0,8х - 8) страниц - оставшаяся часть книги
0,3 · (0,8х - 8) + 6 = 0,24х - 2,4 + 6 = (0,24х + 3,6) страниц - прочитано во второй день
(0,8х - 8) - (0,24х + 3,6) = 0,8х - 8 - 0,24х - 3,6 = (0,56х - 11,6) страниц - оставшаяся часть книги
0,5 · (0,56х - 11,6) + 1 = 0,28х - 5,8 + 1 = (0,28х - 4,8) страниц - прочитано в третий день
Уравнение:
х = 0,2х + 8 + 0,24х + 3,6 + 0,28х - 4,8 + 10
х - (0,2х + 0,24х + 0,28х) = 8 + 3,6 + 10 - 4,8
х - 0,72х = 21,6 - 4,8
0,28х = 16,8
х = 16,8 : 0,28
х = 60
Вiдповiдь: 60 сторiнок у книжцi.