4 + 4√3 см.
Пошаговое объяснение:
Начертим рисунок к задаче:
А - точка, отстоящая от плоскости на расстоянии 4 см,
АН - перпендикуляр из точки А на плоскость, его длина 4 см,
АВ - наклонная из точки А, образующая угол 30° с плоскостью,
АС - наклонная из точки А, образующая угол 45° с плоскостью,
угол между наклонными АВ и АС прямой.
Так как АН перпендикуляр, то треугольники АНВ и АНС прямоугольные.
В треугольнике АНС один из острых углов равен 45°, следовательно два его катета АН и НС равны между собой, таким образом НС = 4 см.
tg ABH = АН/HВ;
HB = AH/tg ABH = 4/tg 30° = 4/(1/√3) = 4√3 (см).
Расстояние между концами наклонных будет равно сумме отрезков ВН и НС:
ВС = ВН + НС = 4 + 4√3 (см).
ответ: 4 + 4√3 см.
1) 3/7 + 5/14 = 6/14 + 5/14 = 11/14
2) 2 1/8 + 3 5/12 = 2 3/24 + 3 10/24 = 5 13/24
3) 6 15/21 + 2 9/14 = 6 30/42 + 2 27/42 = 8 57/42 = 9 15/42 = 9 5/14
4) 5 13/15 + 1 7/12 = 5 52/60 + 1 35/60 = 6 87/60 = 7 27/60 = 7 9/20
5) 1 - 9/11 = 11/11 - 9/11 = 2/11
6) 8/9 - 7/12 = 32/36 - 21/36 = 11/36
7) 8 - 5 4/9 = 7 9/9 - 5 4/9 = 2 5/9
8) 7 3/8 - 3 5/6 = 7 9/24 - 3 20/24 = 6 33/24 - 3 20/24 = 3 13/24 = 3 13/24
9) 3/8 * 2/9 = 6/72 = 1/12
10) 2 1/10 * 1 1/14 = 21/10 * 15/14 = 9/4 = 2 1/4
11) 3 2/5 * 1/19 = 17/5 * 1/19 = 17/95
12) 5/7 : 3/8 = 5/7 * 8/3 = 40/21 = 1 19/21
13) 4 4/9 : 2 2/3 = 40/9 : 8/3 = 40/9 * 3/8 = 5/3 = 1 2/3