1) Все углы равностороннего треугольника равны по 60º.
2) Высота, медиана и биссектриса, проведённые к каждой из сторон равностороннего треугольника, совпадают:
AF — высота, медиана и биссектриса, проведённые к стороне BC;
BF — высота, медиана и биссектриса, проведённые к стороне AC;
CD — высота, медиана и биссектриса, проведённые к стороне AB.
Длины всех трёх высот (медиан, биссектрис) равны между собой:
AK=BF=CD.
Если a — сторона треугольника, то
3) Точка пересечения высот, биссектрис и медиан называется центром правильного треугольника и является центром вписанной и описанной окружностей (то есть в равностороннем треугольнике центры вписанной и описанной окружностей совпадают).
4) Точка пересечения высот, биссектрис и медиан правильного треугольника делит каждую из них в отношении 2:1, считая от вершин:
AO:OK=BO:OF=CO:OD=2:1.
5) Расстояние от точки пересечения высот, биссектрис и медиан
до любой вершины треугольника равно радиусу описанной окружности:
6) Расстояние от точки пересечения высот, биссектрис и медиан до любой стороны треугольника равно радиусу вписанной окружности:
7) Сумма радиусов вписанной и описанной окружностей правильного треугольника равна его высоте, медиане и биссектрисе: R+r=BF.
8) Радиус вписанной в правильный треугольник окружности в два раза меньше радиуса описанной окружности:
R=2r.
Обозначим скорость лодки за V, а скорость течения реки за (х), тогда скорость лодки по течению равна:
(V-x)=44 (1)
скорость лодки против течения реки равна:
(V+x)=48 (2)
Из первого уравнения V равно:
V=44+x
Из второго уравнения V равно:
V=48-x
Приравняем:
44+х=48-х
х+х=48-44
2х=4
х=4:2
х=2 (км/час) - скорость течения реки
ответ: Скорость течения реки 2 км/час