М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Попорпо
Попорпо
25.08.2022 10:05 •  Математика

Какова градусная мера угла,составляющего 1/3прямого угла? начерти этот угол,обозначьте его буквами и сделайте запись

👇
Ответ:
danik24rysskiy
danik24rysskiy
25.08.2022
90:3=30 градусная мера угла
4,6(58 оценок)
Открыть все ответы
Ответ:
samira21111
samira21111
25.08.2022
1) Дана точка А(5; -2) и  гипербола x^2-16y^2=16.

Уравнение гиперболы выразим в каноническом виде.
(х²/4²) - (у²/1²) = 1.
Имеем a = 4 и b = 1.
Уравнение асимптоты гиперболы x^2-16y^2=16 с положительным угловым коэффициентом: у = (1/4)х.
Для параллельной прямой угловой коэффициент сохраняется.
у = (1/4)х + в.
Для определения параметра в подставим координаты точки А:
-2 = (1/4)*5 + в.
Отсюда в = -2 - (5/4) = -13/4.
Получаем уравнение прямой у = (1/4)х - (13/4).
График дан в приложении.

2) Так как одна сторона угла параллельна оси Ох, то угловой коэффициент его биссектрисы в уравнении прямой равен тангенсу угла наклона.
Выразим уравнение биссектрисы относительно у:
х - 2у + 6 = 0,
у = (1/2)х + 3.  tg(α) = 1/2.

Вторая сторона угла имеет двойной угол наклона к оси Ох.
tg(2α) = 2tg(α)/(1 - tg²(α)) = 2*(1/2)/(1-(1/4)) = 1/(3/4) = 4/3.
Значит, к2 = 4/3.
Уравнение второй стороны угла у = (4/3)х + в.
Найдём вершину угла как точку пересечения у = 2  и  х - 2у + 6 = 0.
Для этого подставим во второе уравнение у = 2:
х - 2*2 + 6 = 0,
х = -2, а у = 2 (точка пересечения лежит на прямой у = 2).
Для определения параметра в подставим эти координаты:
2 = (4/3)*(-2) + в,
в = 2 + (8/3) = 14/3.
Имеем уравнение второй стороны угла:
у = (4/3)х + (14/3).
 

Написать уравнение прямой, проходящей через т. а(5, -2) параллельно асимптоте гиперболы x^2-16y^2=16
4,4(61 оценок)
Ответ:
lloginova58
lloginova58
25.08.2022
Записать уравнение касательной и нормали, к кривой y=ln(x) в точке x₀=3.

Решение
Уравнение касательной к кривой в точке с координатами (x₀;y₀) определяет уравнение
                                     y - y₀ = y'(x₀)·(x - x₀)
где y'(х₀) - производная исходной функции в точке касания.
Найдем производную функции
   y'(x) = (ln(x))' =1/x
Значение производной в точке х₀=3 
 y'(3) =1/3
Координаты точки касания: х₀ = 3; у₀ = ln(3) 
Запишем уравнение касательной к кривой y=ln(x) в точке х₀=3
                                     y - ln(3) = (1/3)(x - 3)
                                               y  = x/3 - 1 + ln(3)
Уравнение касательной определяется уравнением
                                          y - y₀ = -(1/y'(x₀))·(x - x₀)
                                      y - ln(3) = -3·(x - 3)
                                               y  = -3x + 9 + ln(3)
4,4(4 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ