М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
didisa0282
didisa0282
31.01.2023 11:57 •  Математика

Решите уравнение 1) |у|-2=1 2) |5у|-4=6 3) 4+|3у|=7 я просто не понела как их решать

👇
Ответ:
3класс49
3класс49
31.01.2023
1)|y|=1+2    |y|=3 y= 3  y=-3
2)|5y|=10   y=2 или y=-2
3)|3y|=7-4     y=1 y=-1
4,8(100 оценок)
Открыть все ответы
Ответ:
1)Через 3 точки можно провести плоскость, а 4 точку можно взять и в этой плоскости, и вне нее. Значит, ответ отрицательный
2)верно
3)а) Нет. Если А, В и С лежат на одной прямой, а Д - нет, то по следствию 1 можно провести плоскость, а значит все точки будут лежать в одной плоскости, что не соответствует условию задачи.
4)Нет.две плоскости при пересечении имеют только одну общую прямую(точек может быть много) но лежать они будут на одной прямой
5) Неверно, по аксиоме А3 они пересекаются по прямой.
6)Прямые AB и CD пересекаться не могут, т.к. через 2 пересекающиеся прямые проходит плоскость, и притом только одна, что противоречит условию задачи.
7) Неверно, по аксиоме А3 они пересекаются по прямой.
8) Да (аксиома А1).
9)Одну, если прямые параллельны. Если прямые скрещивающиеся, то ни одной. Если две совпадающие прямые считать не пересекающимися, то через них можно провести бесконечное количество плоскостей.
4,4(94 оценок)
Ответ:
EcLIpsЕ
EcLIpsЕ
31.01.2023
1)Через 3 точки можно провести плоскость, а 4 точку можно взять и в этой плоскости, и вне нее. Значит, ответ отрицательный
2)верно
3)а) Нет. Если А, В и С лежат на одной прямой, а Д - нет, то по следствию 1 можно провести плоскость, а значит все точки будут лежать в одной плоскости, что не соответствует условию задачи.
4)Нет.две плоскости при пересечении имеют только одну общую прямую(точек может быть много) но лежать они будут на одной прямой
5) Неверно, по аксиоме А3 они пересекаются по прямой.
6)Прямые AB и CD пересекаться не могут, т.к. через 2 пересекающиеся прямые проходит плоскость, и притом только одна, что противоречит условию задачи.
7) Неверно, по аксиоме А3 они пересекаются по прямой.
8) Да (аксиома А1).
9)Одну, если прямые параллельны. Если прямые скрещивающиеся, то ни одной. Если две совпадающие прямые считать не пересекающимися, то через них можно провести бесконечное количество плоскостей.
4,8(78 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ