Пошаговое объяснение:
Интегрирование по частям
Пусть U(x) и V(x) - дифференцируемые функции. Тогда d(U(x)V(x)) = U(x)dV(x) + V(x)dU(x). Поэтому U(x)dV(x) = d(U(x)V(x)) – V(x)dU(x). Вычисляя интеграл от обеих частей последнего равенства, с учетом того, что ∫d(U(x)V(x))=U(x)V(x)+C, получаем соотношение
Интегрирование по частям
называемое формулой интегрирования по частям. Понимают его в том смысле, что множество первообразных, стоящее в левой части, совпадает со множеством первообразных, получаемых по правой части.
Решение онлайн
Видеоинструкция
С данного онлайн-калькулятора можно вычислять интегралы по частям. Решение сохраняется в формате Word.
infinity
∫
pi
1/2*(x+1)*exp(x)
? dx
ДалееТакже рекомендуется изучить сервис вычисление интегралов онлайн
Применение метода интегрирования по частям
В связи с особенностями нахождения определенных величин, формулу интегрирования по частям очень часто используют в следующих задачах:
Математическое ожидание непрерывной случайной величины. Формула для нахождения математического ожидания и дисперсии непрерывной случайной величины включает в себя два сомножителя: функцию полинома от x и плотность распределения f(x).
Разложение в ряд Фурье. При разложении необходимо определять коэффициенты, которые находятся интегрированием от произведения функции f(x) и тригонометрической функции cos(x) или sin(x).
Типовые разложения по частям
Вид интеграла Разложения на части
∫Pn(x)cos(ax)dx, ∫Pn(x)sin(ax)dx, ∫Pn(x)eaxdx, где Pn(x) - некоторый полином (многочлен) степени n U(x)=Pn(x), dV(x)=cos(ax)dx
∫ln(P(x))dx U=ln(P(x)); dV=dx
∫arcsin(ax)dx U=arcsin(ax); dV=dx
U=ln(x); dV=dx/x
При использовании формулы интегрирования по частям нужно удачно выбрать U и dV, чтобы интеграл, полученный в правой части формулы находился легче. Положим в первом примере U=ex, dV=xdx. Тогда dU=exdx, и Вряд ли интеграл ∫x2exdx можно считать проще исходного.
Иногда требуется применить формулу интегрирования по частям несколько раз, например, при вычислении интеграла ∫x2sin(x)dx.
Интегралы ∫eaxcos(bx)dx и ∫eaxsin(bx)dx называются циклическими и вычисляются с использованием формулы интегрирования по частям два раза.
ПРИМЕР №1. Вычислить ∫xexdx.
Положим U=x, dV=exdx. Тогда dU=dx, V=ex. Поэтому ∫xexdx=xex-∫exdx=xex-ex+C.
ПРИМЕР №2. Вычислить ∫xcos(x)dx.
Полагаем U=x, dV=cos(x)dx. Тогда dU=dx, V=sin(x) и ∫xcos(x)dx=xsin(x) - ∫sin(x)dx = xsin(x)+cos(x)+C
ПРИМЕР №3. ∫(3x+4)cos(x)dx
2 3/10+(1,5-0,7)=2,3+0,8=3,1
6 3/4-(2,35+0,23)=6,75-2,35-0,23=4,40 - 0,23=4,17
3 2/5 - (0,9+0,45)=3,40 - 1,35=2,05
(12,4-9,35)+2 12/25=3,05+2,48=5,53
(27,61-8,11)+4 1/20=19,5+4,05=23,55
(6,35-2,05)+9/10=4,3+0,9=5,2
1282.
а=6,3 см
b=а+20,8=6,3+20,8 =27,1см
с=а-0,9=6,3-0,9=5,4 см
Р=a+b+c=6,3+27,1+5,4=38,8 см
1292.
1) 0,75+2,5+1,8=5,05(кг) - 5,05 >4.7 пакет не выдержит.
2) 0,67+,,,+1,5=2,17+... - если меньше 4,7, то можно.