1 задача, ты совершенно не объяснил что делать. 2 я решу:
Для того что бы найти уравнение касательной к графику функции, нужно:
Найти производную Из полученной производной, делаем уравнение: И это и есть уравнение касательной, а теперь, перейдем к решению:
Найдем производную функции Это простая степенная функция, а в каждой степенной функции, производную находят так: - где а- степень В нашей 3 степени: - вот такая вот производная
Дальше делаем так:
Вначале найдем значение функции f(x)=x^3 в точке :
f(3)= 3^3= 9
И получаем следующее: Ну если упростить, получим: - это и есть касательная в ДАННОЙ точке.
Не со всем правильно я где то решил, но суть та же, а касательная : y=27x-54
Доказательства: если всего 14 учеников решило 58 задач,то при этом каждый ученик в среднем решит 4,1 задачи,но при этом есть ученики,которые решили по 1,2,3 задачи.Если мы берем как обязательное,что хотя бы 1 ученик решил 5 задач,мы получаем-1 по 5 задачи на остальных 13 учеников по 53 задач.при этом условии на оставшихся 13 учеников в среднем 4,1 задачи,а это значит,что у нас уже есть как минимум 3 ученика, решившие по 5 задач. А именно если 3 учеников решили по 5 задач, то на остальных 11 приходится в среднем по 3,9 задач
406
620
420
427
920
вроде всё