Задание. Доказать, что сумма трех степеней числа 3 с натуральными идущими подряд показателями, меньший из которых не меньше числа 2, делится без остатка на 117. Решение: Из условия нужно доказать, что делится без остатка на 117 при любом натуральном . Докажем методом математической индукции. 1) Базис индукции (n=2) При получаем , т.е. утверждение справедливо. 2) Допустим, что и при сумма делится на 117. 3) Индукционный переход (n=k+1) По предположению индукции делится на 117. Таким образом, сумму трех степеней числа 3 с натуральными идущими подряд показателями, меньший из которых не меньше 2, делится без остатка на 117.
Если мой ответ вам вас нажать на "лучший ответ". Заранее благодарю вас, будь то сердечко, лучший ответ или оценка.
128:x+29, x=16.
128:16+29 = 8+29 = 37.
Правильный ответ D.