прямые параллельны по 2 му признаку - равенству накрест лежащих углов ∠РЕМ = ∠1
Пошаговое объяснение:
2й признак параллельности прямых гласит
Если при пересечении двух прямых третьей секущей накрест лежащие углы равны, или соответственные углы равны, или сумма односторонних углов равна 180° — то прямые параллельны.
в нашем случае докажем, что накрест лежащие углы равны.
у нас накрест лежащие углы это ∠РЕМ и ∠1. докажем их равенство
РМ =РЕ , значит ΔРМЕ - равнобедренный, а значит ∠РЕМ = РМЕ
а поскольку по условию ∠РМЕ (∠2) =∠1, то ∠РЕМ = ∠1
что и требовалось доказать
ширина-3
2)длина-24
ширина-4
3)длина-16
ширина-6
4)длина-48
ширина-2
везде сантиметров