М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Wertwer123
Wertwer123
22.06.2022 18:56 •  Математика

Быстро чему равна площадь треугольника

👇
Ответ:
Kiska41384
Kiska41384
22.06.2022
S=1/2*a*h
S=1/2*a*b (в прямоугольном треугольнике)
S=(a^2*√3)/2 (в равностороннем)
4,7(33 оценок)
Открыть все ответы
Ответ:
pandamashenka
pandamashenka
22.06.2022

ответэлементами множеств а, p, q являются натуральные числа, причём p = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21}, q = {3, 6, 9, 12, 15, 18, 21, 24, 27, 30}. известно, что выражение

 

((x ∈ p) → (x ∈ a)) ∨ (¬(x ∈ a) → ¬(x ∈ q))

 

истинно ( т. е. принимает значение 1) при любом значении переменной х. определите наименьшее возможное значение суммы элементов множества a.

пояснение.

раскроем две импликации. получим:

(¬(x ∈ p) ∨ (x ∈ a)) ∨ ((x ∈ a) ∨ ¬(x ∈ q))

:

(¬(x ∈ p) ∨ (x ∈ a) ∨ ¬(x ∈ q))

¬(x ∈ p) ∨ ¬(x ∈ q) 0, только когда число лежит в обоих множествах. значит, чтобы все выражение было истинно, нужно все числа, лежащие в p и q, занести в а. такие числа 3, 9, 15 и 21. их сумма 48.

 

ответ: 48

пошаговое объяснение:

4,7(5 оценок)
Ответ:
морол
морол
22.06.2022

Представим себе двудольный граф: слева вершины, обозначающие студентов, справа — вопросы. Если студент ответил на вопрос, то между этим студентом и этим вопросом проведем ребро.

Рассмотрим первую пару вопросов (a_{1},a_{2}). Для них по условию найдется хотя бы 6 студентов, каждый из которых ответил правильно ровно на один из этих двух вопросов. Пусть это множество из хотя бы 6 студентов называется A_{1}. Тогда остальных студентов (тех, что не удовлетворяют описанному требованию) не больше 5 — это множество B_{1}. Рассмотрим следующую пару вопросов (a_{3},a_{4},попарно отличных от предыдущих). Тогда A_{2} имеет с A_{1} хотя бы одно пересечение. Поэтому для пары a_{2},a_{3} будет хотя бы одно ребро из множества B_{1}. Рассматривая далее пары a_{5},a_{6} и соответственно пары a_{2},a_{4} "берем" еще один элемент из B_{1}. Так можно продолжать до тех пор, пока все элементы из B_{1}, коих не больше пяти, не будут взяты. То есть всего можно добавить 2*5=10 вопросов дополнительно к a_{1}, a_{2}. То есть всего не более 12.

Примечание: множество A_{1} делится на два множества, из каждого идут ребра к вопросам a_{1},a_{2}, но из каждого к ровно одному. Для того, чтобы мы могли всегда изымать элементы из B_{1} надо всего лишь без ограничения общности потребовать, чтобы ребро из a_{2} шло в наибольшее из множеств, на которое делится A_{1}. Тогда наименьшее из этих множеств деления не превосходит 5.

4,5(64 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ