Треугольник ABCABC является остроугольным, так как 62<42+5262<42+52. Отсюда следует, что основания высот находятся на сторонах, а не на их продолжениях. Опустим высоту AA1AA1, и пусть она делит отрезок BCBC на части длиной xx и yy. С одной стороны, x+y=5x+y=5. С другой стороны, ввиду теоремы Пифагора, применённой к треугольникам ACA1ACA1 и ABA1ABA1 с общей высотой, 62−x2=AA21=42−y262−x2=AA12=42−y2. Следовательно, x2−y2=20x2−y2=20, то есть x−y=20/5=4x−y=20/5=4, откуда x=9/2x=9/2 и y=1/2y=1/2. Последнее означает, что K=A1K=A1, то есть треугольник ABKABK прямоугольный, и центр описанной около него окружности является серединой гипотенузы ABAB.Теперь опустим высоту BB1BB1, и тем же методом найдём CB1=15/4CB1=15/4, B1A=9/4B1A=9/4. Из этого следует, что MB1=15/4−27/8=3/8MB1=15/4−27/8=3/8, что составляет 1/101/10 от CB1CB1. Точно так же, KBKB составляет 1/101/10 от CBCB. Из этого можно сделать вывод, что прямые KMKM и BB1BB1 параллельны, а потому треугольник AKMAKM также прямоугольный. И центр описанной около него окружности есть середина гипотенузы AKAK.Таким образом, dd есть длина средней линии треугольника ABKABK, откуда d=BK/2=1/4d=BK/2=1/4.
Пусть v - скорость 3-го велосипедиста, тогда второго - 35*v/21= 5*v/3, а первого - 35*v/15 = 7*v/3. Значит, когда третий велосипедист проедет 1 круг, второй - 5/3 круга. а первый - 7.3 круга. Нас интересует, когда все они окажутся в точке старта. А в этот момент все они пройдут целое число кругов. Когда третий велосипедист пройдёт 2 круга, тогда второй - 10/3 круга, а первый - 14/3 круга, т.е. при в этом случае они не встречаются. А вот когда третий пройдёт 3 круга, тогда второй - 5 кругов, а первый - 7. Так как третий проходит 3 круга за 35*3=105 минут, то они окажутся вместе через 105 минут = 1 ч. 45 мин.
Замечание: задача по сути свелась к нахождению наименьшего общего кратного чисел 15, 21 и 35, которым является число 105.