35 напишите сообщение о районах земли с повышенным естественным радиоактивным фоном. почему в этих районах существует повышенный радиоактивный фон? влияет ли он на здоровье людей, проживающих там?
В горных породах имеются и всегда были радиоактивные изотопы - источник излучения (калий в гранитах) . Космическое излучение так же может быть источником радоктивного фона. Молнии и другие электрические разряды. Выяснилось, что в условиях полного отсутствия фоновой радиации живые организмы плохо развиваются.Человек получает от естественных источников 78% облучения.И да га здоровье человека влияет,т.к большие дозы радиации убивают клетку,останавливают ее деление и т.п., в общем жестко будет.
Допустим Майк забросил n мячей . По условию задачи игроки забросили разное количество мячей, но Майк забросил меньше всех. Получается , что первый игрок минимум забрасывает (n+1) мячей, второй игрок (n+2) мячей , а третий игрок (n+3) мячей. Всего получается : ( n + 1) + (n +2 )+ (n +3)= (3n + 6) мячей По условию : 3n + 6 = 20 3n= 20-6 3n = 14 n= 14/3 n ≈3,67 ≈ 4 , но n ∈ N (натуральное число) ⇒ n≤ 4 Вывод : Майк может забросит не более 4 мячей.
Метод подбора. Просто подставим варианты ответов. а) Допустим Майк забросил 7 мячей. Тогда остальные игроки должны забрасывать больше 7 мячей. 20 = 8 + 9 + 3 не удовлетворяет условию задачи, т. к. 3<7 б) Допустим Майк забрасывает 6 мячей. Остальные игроки больше 6 мячей: 20 = 7 + 8 + 5 не удовл. условию задачи, т. к. 5<6 в) Допустим Майк забрасывает 5 мячей. Остальные игроки больше 5 мячей: 20 = 6 + 7 + 7 не удовл. условию , т.к. два игрока забросили одинаковое количество мячей г) Допустим Майк забрасывает 4 мяча 20 = 5 + 6 + 9 - удовл. условию задачи . д) Допустим Майк забрасывает 3 мяча 20 = 4 + 5 + 11 - удовл. условию задачи Получается , что два варианта ответа удовлетворяют условию, но вариант г) наибольший из предложенных (4>3)
ответ: 4 мяча - наибольшее количество, которое мог забросить Майк.
1. Предположим, что в числе одна из единиц стоит на последнем месте. Получаем число вида ab1, тогда следующее за ним число ab2. Данные числа не могут содержать на двоих ровно одну девятку. 2. Предположим, что в числе одна единица, и она расположена в разряде сотен. Получаем число вида 1ab, причем число 199 не подходит, так как содержит две девятки. Тогда следующее число должно содержать две единицы, и оно имеет вид 1cd. 2.1. Если d=1, то b=0, а=с - пара чисел не может содеражать одну девятку. 2.2. Если с=1, то а=0 (так как три единицы уже набраны). При b=9 и d=0 получаем удивительное число 109. 3. Предположим, что в числе одна единица, и она расположена в разряде десятков. Получаем число вида a1b. Тогда, следующее число аcd должно содержать две единицы: c=d=1. Тогда b=0, цифра а встречается дважды, значит, пара чисел не содержит ровно одну девятку. 4. Предположим, что в числе две единицы: 11a. Тогда, следующее число должно содержать одну единицу: 1bc. Так как b≠1, то b=2. При а=9 и с=0 получаем удивительное число 119. ответ: 2 числа