Путь пройденный вторым обозначаем за икс. Далее зная что скорость одинаковая составляем уравнение.
Решение на фото.
ответ : 36 км второй, 62 км первый
Если подробно:
У нас дано время t для первого 5 часов, для второго 3 часа. Путь S для второго «х» икс (неизвестное) а для первого на 26 больше значит х +26. Скорость у обоих одинаковая. Скорость = путь поделить на время
V = S/t
У первого V = (x+26)/5
У второго V = x/3
Так как они равны мы можем приравнять эти дроби:
(х +26)/ 5 = х/3
Это решается умножением крест на крест. То есть числитель первого умножаем на знаменатель второго, числитель второго на знаменатель первого. Получаем:
3х + 78 = 5х
Переносим 3х на право с противопожарным знаком.
78 = 5х - 3х
78 = 2х
х = 78/2
х = 36
За икс мы принимали путь второго велосипедиста. Значит он проехал 36 км. А первый на 26 больше то есть 36+26 = 62км
1.Нахождение области определения функции
Определение интервалов, на которых функция существует.
!!! Очень подробно об области определения функций и примеры нахождения области определения тут.
2.Нули функции
Для вычисления нулей функции, необходимо приравнять заданную функцию к нулю и решить полученное уравнение. На графике это точки пересечения с осью ОХ.
3.Четность, нечетность функции
Функция четная, если y(-x) = y(x). Функция нечетная, если y(-x) = -y(x). Если функция четная – график функции симметричен относительно оси ординат (OY). Если функция нечетная – график функции симметричен относительно начала координат.
4.Промежутки знакопостоянства
Расстановка знаков на каждом из интервалов области определения. Функция положительна на интервале - график расположен выше оси абсцисс. Функция отрицательна - график ниже оси абсцисс.
5. Промежутки возрастания и убывания функции.
Для определения вычисляем первую производную, приравниваем ее к нулю. Полученные нули и точки области определения выносим на числовую прямую. Для каждого интервала определяем знак производной. Производная положительна - график функции возрастает, отрицательна - убывает.
6. Выпуклость, вогнутость.
Вычисляем вторую производную. Находим значения, в которых вторая производная равна нулю или не существует. Вторая производная положительна - график функции выпукл вверх. Отрицательна - график функции выпукл вниз.
7. Наклонные асимптоты.
Пример исследования функции и построения графика №1
Исследовать функцию средствами дифференциального исчисления и построить ее график.
Пошаговое объяснение:
То есть пример будет: