588
Пошаговое объяснение:
Карта дорог представляет собой три двудольных графа.
число дорог равно 3*14*14 = 588.
существует путь, проходящий через все дороги.
Действительно, каждый отдельно взятый двудольный граф с четным числом вершин в каждой дольке можно обойти по следующему алгоритму (здесь 1,2,3,4 - вершины первого графа, a,b,c,d - вершины второго графа):
1a2b1c2d1e2f1g2h1i2j1k2l1m2n...
...3a4b3c4d3e4f3g4h3i4j3k4l3m4n...
...
Алгоритм обхода всех дорог может быть таким:
1) обходим первый двудольный граф полностью;
2) обходим второй граф весь, кроме последней дороги;
3) обходим третий граф полностью;
4) проходим последнюю дорогу второго графа.
4/Задание № 4:
У Вани было 210 рублей монетами достоинством 2, 5 и 10 рублей. Двухрублёвых монет было в три раза больше, чем пятирублёвых, а десятирублёвых столько, сколько пятирублёвых. Сколько всего монет было у Вани?
РЕШЕНИЕ: Пусть пятирублевых и десятирублевых монет было по х, тогда двухрублёвых монет было 3х. Всего монет было х+х+3х=5х. Общая сумма денег:
2*3х+5х+10х=210
6х+5х+10х=210
21х=210
х=210/21
х=10
Всего монет 5х=5*10=50
ОТВЕТ: 50 монет
4/Задание № 6:
На трёх деревьях было 44 синицы. С первого дерева улетело 4 синицы, затем 5 перелетело с первого на второе и 6 с первого на третье. На первом дереве осталось столько, сколько на втором и третьем вместе. Сколько синиц было на первом дереве первоначально?
РЕШЕНИЕ: После отлета 4 синиц, на всех деревьях осталось 44-4=40 синиц. Так как в результате на первом дереве осталось столько синиц, сколько на втором и третьем вместе, то другими словами там сидела половина от общего числа синиц, то есть там находилось 40/2=20 синиц. До перелетов синиц с первого дерева на два других на нем было 20+5+6=31, а до отлета 4 синиц - соответственно 31+4=35.
ОТВЕТ: 35 синиц
4/Задание № 1:
Сколько двузначных чисел, делящихся на 3, у которых цифра десятков на 3 меньше цифры единиц?
РЕШЕНИЕ: Двузначные числа, у которых цифра десятков на 3 меньше цифры единиц: 14, 25, 36, 47, 58, 69. Из них на 3 делятся лишь числа 36 и 69.
ОТВЕТ: 2 числа
ответ:уравнение, одним из корней которого является длина высоты трапеции имеет вид 54=(h-3)*h.
Я думаю это есть ответ на поставленный вопрос, но если все же требуется найти высоту h, то решаем так:
54=h²-3h;
h²-3h-54=0;
D=9+4*54=225;
h₁=(3-15)/2=-6 (не подходит по условию задачи)
h₂=(3+15)/2=9см.