М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
lionelmessi000
lionelmessi000
15.01.2021 21:21 •  Математика

Какая фамилия созвучна с именем феликс?

👇
Ответ:
demirooova
demirooova
15.01.2021
Лимонов, Сладковский, Сноуден.
4,8(1 оценок)
Открыть все ответы
Ответ:
89627750122
89627750122
15.01.2021

Примеры решений задач о выборе шаров

Пример 1. В урне 10 белых и 8 черных шаров. Наудачу отобраны 5 шаров. Найти вероятность того, что среди них окажется ровно 2 белых шара.

Подставляем в формулу (1) значения: K=10, N−K=8, итого N=10+8=18, выбираем n=5 шаров, из них должно быть k=2 белых и соответственно, n−k=5−2=3 черных. Получаем:

P=C210⋅C38C518=45⋅568568=517=0.294.

Пример 2. В урне 5 белых и 5 красных шаров. Какова вероятность вытащить наудачу оба белых шара?

Здесь шары не черные и белые, а красные и белые. Но это совсем не влияет на ход решения и ответ.

Подставляем в формулу (1) значения: K=5 (белых шаров), N−K=5 (красных шаров), итого N=5+5=10 (всего шаров в урне), выбираем n=2 шара, из них должно быть k=2 белых и соответственно, n−k=2−2=0 красных. Получаем:

P=C25⋅C05C210=10⋅145=29=0.222.

Пример 3. В корзине лежат 4 белых и 2 черных шара. Из корзины достали 2 шара. Какова вероятность, что они одного цвета?

Здесь задача немного усложняется, и решим мы ее по шагам. Введем искомое событие

A= (Выбранные шары одного цвета) = (Выбрано или 2 белых, или 2 черных шара).

Представим это событие как сумму двух несовместных событий: A=A1+A2, где

A1= (Выбраны 2 белых шара),

A2= (Выбраны 2 черных шара).

Выпишем значения параметров: K=4 (белых шаров), N−K=2 (черных шаров), итого N=4+2=6 (всего шаров в корзине). Выбираем n=2 шара.

Для события A1 из них должно быть k=2 белых и соответственно, n−k=2−2=0 черных. Получаем:

P(A1)=C24⋅C02C26=6⋅115=25=0.4.

Для события A2 из выбранных шаров должно оказаться k=0 белых и n−k=2 черных. Получаем:

P(A2)=C04⋅C22C26=1⋅115=115.

Тогда вероятность искомого события (вынутые шары одного цвета) есть сумма вероятностей этих событий:

P(A)=P(A1)+P(A2)=25+115=715=0.467.

4,7(82 оценок)
Ответ:
Qwan
Qwan
15.01.2021

х - цена жевательной резинки; 1,70 = 170 центов

у - цена шоколадной конфеты; 1,30 = 130 центов

Составим систему уравнений по условию задачи и решим её методом алгебраического сложения:

{5х + 8у = 170

{7х + 4у = 130

- - - - - - - - - - -

12х + 12у = 300

Разделим обе части на 12

х + у = 25 ⇒ х = (25 - у)

Подставим значение х в любое уравнение системы

5 · (25 - у) + 8у = 170        или         7 · (25 - у) + 4у = 130

125 - 5у + 8у = 170                           175 - 7у + 4у = 130

3у = 170 - 125                                   -3у = 130 - 175

3у = 45                                              -3у = -45

у = 45 : 3                                           у = -45 : (-3)

у = 15                                                 у = 15

Подставим значение у в любое уравнение системы

5х + 8 · 15 = 170            или              7х + 4 · 15 = 130

5х + 120 = 170                                   7х + 60 = 130

5х = 170 - 120                                    7х = 130 - 60

5х = 50                                              7х = 70

х = 50 : 5                                            х = 70 : 7

х = 10                                                  х = 10

ответ: 15 центов - цена жевательной резинки и 10 центов - цена шоколадной конфеты.

4,5(90 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ