М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ddfdffdf
ddfdffdf
25.08.2022 03:20 •  Математика

Длина прямоугольника 6,4 см а ширина составляет 25% длины найдтите площаль и периметр прямоугольника

👇
Ответ:
Angelina23411
Angelina23411
25.08.2022
6,4*25/100=1,6 см
S=6,4*1,6=10,24 см^2
Р=6,4*2+1,6*2=16 см
4,7(26 оценок)
Ответ:
Deeplace
Deeplace
25.08.2022
6.4=100%
х=25%
составим пропорцию
6.4*25\100=1.6
периметр это сумма длин всех сторон
6.4+6.4+1.6+1.6=16
ответ: периметр 16 см 
4,5(44 оценок)
Открыть все ответы
Ответ:
tatyanakhmelev
tatyanakhmelev
25.08.2022

Пошаговое объяснение:

В основном используется табличный интеграл от степенной функции, да ещё от синуса.

\int\limits {x^n} \, dx =  \frac{1}{n+1} x^{n+1} +C \\  \\  \int\limits {sinx} \, dx = -cosx + C

1а. f(x)=2-x

\int\limits {(2-x)} \, dx = 2* \frac{1}{0+1} x^{0+1} - \frac{1}{1+1}x^{1+1} + C = 2x - \frac{1}{2} x^2 +C

2б. f(x)=x^4 - sin x

\int\limits {(x^4 - sin x)} \, dx =  \frac{1}{4+1}x^{4+1} -(-cosx) +C =  \frac{1}{5}  x^5+ cosx +C

2в. f(x)= 2/ x^3

\int\limits { \frac{2}{x^3} } \, dx = \int\limits { 2x^{-3} \, dx = 2* \frac{1}{-3+1} x^{-3+1} + C = -x^{-2} + C = - \frac{1}{x^2} + C

4,4(11 оценок)
Ответ:
ksss4
ksss4
25.08.2022

Пошаговое объяснение:

В основном используется табличный интеграл от степенной функции, да ещё от синуса.

\int\limits {x^n} \, dx =  \frac{1}{n+1} x^{n+1} +C \\  \\  \int\limits {sinx} \, dx = -cosx + C

1а. f(x)=2-x

\int\limits {(2-x)} \, dx = 2* \frac{1}{0+1} x^{0+1} - \frac{1}{1+1}x^{1+1} + C = 2x - \frac{1}{2} x^2 +C

2б. f(x)=x^4 - sin x

\int\limits {(x^4 - sin x)} \, dx =  \frac{1}{4+1}x^{4+1} -(-cosx) +C =  \frac{1}{5}  x^5+ cosx +C

2в. f(x)= 2/ x^3

\int\limits { \frac{2}{x^3} } \, dx = \int\limits { 2x^{-3} \, dx = 2* \frac{1}{-3+1} x^{-3+1} + C = -x^{-2} + C = - \frac{1}{x^2} + C

4,7(68 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ