распилов 9 р; чурбаков 15 ч; бревен ? бр Решение. 1 С П О С О Б. 9 + 1 = 10 (ч) получилось бы чурбаков, если было бы одно длинное бревно; 15 - 10 = 5 (ч) уже были отрезаны, т.е. наше длинное бревно было не целым, а разрезанным 5 раз (Бревно - это длинный чурбак!); 5 + 1 = 6 (бр.) всего бревен было. ответ: 6 бревен всего было; 2 С П О С О Б. При распиле бревна чурбаков получается на 1 ( крайний) больше. 15 - 9 = 6 (ч) разница между числом бревен и числом распилов, т.е. число крайних чурбаков. 6 : 1 = 6 (бр.) нужно распилить бревен. ответ: 6 бревен было распилено.
Даны 2 точки: А(6; -1) и В (-2; 5 2/3). 1) Уравнение прямой линии, проходящей через 2 точки, в каноническом виде имеет вид: . Подставив координаты точек, получаем:
2) Это же уравнение можно представить в общем виде. Для этого надо привести к общему знаменателю и переменные перенести в одну сторону: 20х - 120 = -24у - 24, 20х + 24у - 96 = 0, Сократим на 4: 5х - 6 у - 24 = 0.
3) Третий вариант - уравнение с коэффициентом. Уравнение прямой в виде y = k · x + b . В этом уравнении: k - угловой коэффициент прямой (k = tg(φ), φ - угол, который образует данная прямая с положительным направлением оси OX); b - y-координата точки (0; b), в которой искомая прямая пересекает ось OY. k = (yB - yA) / (xB - xA) = (5.66666666 - (-1)) / (-2 - (6)) = -0.833; b = yB - k · xB = 5.66666666 - (-0.833) · (-2) = yA - k · xA = -1 - (-0.833) · (6) = 4 . Искомое уравнение: y = -0.833 · x + 4 .