На спартакиаду прибыло 20 лыжников, 10 гимнастов и 5 шахматистов. вероятность выполнить квалификационную норму такова: для лыжников – 0,8; для гимнаста – 0,6; для шахматиста – 0,9. случайно вызванный студент выполнил норму. к какой группе спортсменов он вероятнее всего принадлежал?
В1 = 20 / 35 = 4/7
В2 = 10 / 35 = 2/7
В3 = 5 / 35 = 1/7
То есть на вероятность вызова студента каждой группы будет накладываться вероятность его успеха. Так как нас интересует успех представителя любой группы, просуммируем эти произведения:
А1*В1 + А2*В2 + А3*В3 = 0,8 * 4/7 + 0,6 * 2/7 + 0,9 * 1/7 = 32/70 + 12/70 + 9/70 = 53/70 = 0,75 (округлённо)
Вероятность вызова лыжника и его успеха:
А1*В1 = 32/70
Гимнаста:
А2*В2 = 12/70
Шахматиста:
А3*В3 = 9/70
Наибольшее из этих чисел у лыжников.