Выбираем систему координат так, чтобы её начало совпадало с положением автомобиля, находящегося в точке А. Уравнение его движения х 1 = v1t. Тогда уравнение движения второго автомобиля х 2 =x0 +v2t. В некоторый момент времени координаты движущихся автомобилей будут одинаковы х1 = х2. Тогда v1t. = x0 +v2t. ю Отсюда t = x0/(v1 - v2). Вычислим: t = 150/(70 - 40) = 5 (часов) . Подставим. Второй автомобиль двигался из точки В со скоростью 40 км/ч. За 5 ч от путь S = 40*5 = 200 (км) . Можно решить задачу и арифметически: 1). С какой скоростью первый автомобиль догоняет второго? 70 - 40 = 30 (км/ч). 2). За сколько времени он его догонит? 150: 30 = 5 (часов) . 3). На какое расстояние он удалится? 40*5 = 200 (км) . ответ: 200 км. через 5 часов.
1) Пусть количество джипов=х, тогда после обмена количество джипов сократилось на 10% , т.е. стало 100%-10%=90% =0,9х (90%:100%=0,9) джипов. 2) Количество джипов и спорткаров вначале было поровну, т.е. х. После обмена количество спорткаров увеличилось на 25 %, т.е. стало 100%+25%=125%=1,25х (125%:100%=1,25) спорткаров. 3) Спорткаров стало больше, чем джипов на 14 штук: 1,25х-0,9х=14 0,35х=14 х=40 (спорткаров и 40 джипов было изначально). 4) Посчитаем количество спорткаров после обмена: 1,25х=1,25*40=50 ответ: после обмена у Сидорова стало 50 спорткаров.
1000 - 660 = 330