если квадратный трехчлен aх2+bx+c представлен в виде a(х+p)2+q, где p и q — действительные числа, то говорят, что из квадратного трехчлена выделен квадрат двучлена.
покажем на примере как это преобразование делается.
выделим из трехчлена 2x2+12x+14 квадрат двучлена.
вынесем за скобки коэффициент a, т.е. 2:
2
x
2
+
12
x
+
14
=
2
(
x
2
+
6
x
+
7
)
преобразуем выражение в скобках.
для этого представим 6х в виде произведения 2*3*х, а затем прибавим и вычтем 32. получим:
2
(
x
2
+
2
⋅
3
⋅
x
+
3
2
−
3
2
+
7
)
=
2
(
(
x
+
3
)
2
−
3
2
+
7
)
=
=
2
(
(
x
+
3
)
2
−
2
)
=
2
(
x
+
3
)
2
−
4
т.о. мы выделили квадрат двучлена из квадратного трехчлена, и показоли, что:
2
x
2
+
12
x
+
14
=
2
(
x
+
3
)
2
−
4
разложение на множители квадратного трехчлена
если квадратный трехчлен aх2+bx+c представлен в виде a(х+n)(x+m), где n и m — действительные числа, то говорят, что выполнена операция разложения на множители квадратного трехчлена.
покажем на примере как это преобразование делается.
разложим квадратный трехчлен 2x2+4x-6 на множители.
вынесем за скобки коэффициент a, т.е. 2:
2
x
2
+
4
x
−
6
=
2
(
x
2
+
2
x
−
3
)
преобразуем выражение в скобках.
для этого представим 2х в виде разности 3x-1x, а -3 в виде -1*3. получим:
=
2
(
x
2
+
3
⋅
x
−
1
⋅
x
−
1
⋅
3
)
=
2
(
x
(
x
+
3
)
−
1
⋅
(
x
+
3
)
)
=
=
2
(
x
−
1
)
(
x
+
3
)
т.о. мы разложили на множители квадратный трехчлен, и показоли, что:
2
x
2
+
4
x
−
6
=
2
(
x
−
1
)
(
x
+
3
)
заметим, что разложение на множители квадратного трехчлена возможно только тогда, когда, квадратное уравнение, соответсвующее этому трехчлену имеет корни.
т.е. в нашем случае разложить на множители трехчлен 2x2+4x-6 возможно, если квадратное уравнение 2x2+4x-6 =0 имеет корни. в процессе разложения на множители мы установили, что уравнение 2x2+4x-6 =0 имеет два корня 1 и -3, т.к. при этих значениях уравнение 2(x-1)(x+3)=0 обращается в верное равенство
Решение задачи:
Ромб — четырехугольник, у которого все стороны равны, противоположные стороны параллельны, противоположные углы равны, диагонали ромба в точке пересечения делятся пополам, перпендикулярны друг другу, являются биссектрисами, то есть делят угол пополам. Сумма всех углов ромба равна 360 градусов.
1. Если диагональ ромба образует со стороной ромба угол 43 градуса, Тогда острый угол ромба равен 43 * 2 = 86 градусов.
2. Найдем тупой угол ромба.
(360 - 86 * 2) / 2 = 94 градуса.
ответ: Тупой угол ромба равен 94 градуса.
рисунок
: