Пусть х - одна сторона прямоугольника, тогда другая сторона будет равна х-14. Диагональ прямоугольника делит его на два равных прямоугольных треугольника, тогда диагональ будет их общей гипотенузой, а стороны прямоугольника - их катетами. По т. Пифагора 26²=х²+(х-14)² ⇔ ⇔ х²+х²-28х+196=26² ⇔ 2х²-28х-480=0 ⇔ x²-14x-240=0, D=196-4*1*(-240)=1156, x1=14+34/2=48/2=24, x2=14-34/2=-10 (второй корень уравнения не удовлетворяет условию задачи; сторона прямоугольника не может быть равна отрицательному числу; поэтому число -10 мы исключаем из рассмотрения). Таким образом, стороны прямоугольника равны: 24 см и (24-14)=10см.
Т.к треугольник равнобедренный то биссектриса также является медианой, а значит все стороны равны 6*2=12 см. следовательно в треуг-ке АDC сторона AC равна 12 см, а сторона DC по условию 6 см. отсюда можно найти расстояние от вершины А до стороны (прямой) ВС, следовательно нужно найти биссектрису AD по теореме Пифагора: AC в кв=AD в кв + DC в кв. выражаем из этого AD: AD=квадратный корень из разности квадратов сторон AC и DC. AD= корень из 12 в кв - 6 в кв = корень из 144 - 36= корень из 108= 2 корня из 27.пусть АС=2а, тогда CD=a , по т Пифагора AD=a√3a=2√3a²√3=6aa√3=6S=0.5*2a*6AD=2√3*√3=6S=0.5a*a√3
ответ: 27 см