Даже далекие от астрономии люди знают, что звезды имеют разный блеск. Наиболее яркие звезды без труда видны на засвеченном городском небе, а самые тусклые едва различимы при идеальных условиях наблюдения.
Для характеристики блеска звезд и других небесных светил (например, планет, метеоров, Солнца и Луны) ученые выработали шкалу звездных величин.
Видимая звездная величина (m; часто ее называют просто "звездная величина") указывает поток излучения вблизи наблюдателя, т. е. наблюдаемую яркость небесного источника, которая зависит не только от реальной мощности излучения объекта, но и от расстояния до него.
Это безразмерная астрономическая величина, характеризующая создаваемую небесным объектом вблизи наблюдателя освещенность.
Освещённость – световая величина, равная отношению светового потока, падающего на малый участок поверхности, к его площади. Единицей измерения освещённости в Международной системе единиц (СИ) служит люкс (1 люкс = 1 люмену на квадратный метр), в СГС (сантиметр-грамм-секунда) – фот (один фот равен 10 000 люксов).
Освещённость прямо пропорциональна силе света источника света. При удалении источника от освещаемой поверхности её освещённость уменьшается обратно пропорционально квадрату расстояния (закон обратных квадратов).
Субъективно видимая звездная величина воспринимается как блеск (у точечных источников) или яркость (у протяженных).
При этом блеск одного источника указывают путем его сравнения с блеском другого, принятого за эталон. Такими эталонами обычно служат специально подобранные непеременные звезды.
Звездную величину сначала ввели как указатель видимого блеска звезд в оптическом диапазоне, но позже распространили и на другие диапазоны излучения: инфракрасный, ультрафиолетовый.
Таким образом, видимая звёздная величина m или блеск является мерой освещённости Е, создаваемой источником на перпендикулярной к его лучам поверхности в месте наблюдения.
Исторически все началось более 2000 лет назад, когда древнегреческий астроном и математик Гиппарх (II век до нашей эры) поделил видимые глазом звезды на 6 величин.
Самым ярким звездам Гиппарх присвоил первую звездную величину, а самым тусклым, едва видимым глазом, – шестую, остальные равномерно распределил по промежуточным величинам. Причем, разделение на звездные величины Гиппарх произвел так, чтобы звезды 1-й величины казались настолько ярче звезд 2-й величины, насколько те кажутся ярче звезд 3-й величины и т. д. То есть от градации к градации блеск звезд изменялся на одну и ту же величину.
Я полагаю, что только(x+4) в квадрате, если это так, то: -18/x^2+8x+16-10>= -> (приводим 10 к общему знаменателю с первой половиной) доставляйте сами больше или равно 0, ибо у меня подобные знаки только вас запутают, я вспомню о них в конце -> (-18/x^2+8x+16)-(10x^2+80x+160)/(x^2+8x+16) = (-18-10x^2-80x-160)/x^2+8x+16= (умножаем на -1 для удобства, при это знак меняется) -> 10x^2+80x+178/x^2+8x+16 меньше или равняется нулю. Теперь, ищем дискриминант к знаменателю, этим корням она не будет ровняться, так как делить на ноль в математике нельзя: x^2+8x+16=0 D=b^2-4ac=64-4*1*16=64-64=0 - это значит будет один корень. -b/2a= -8/2=-4. Уравнение не будет равняться -4. Теперь ищем дискриминант к числителю: 10x^2+80+178=0 D=b^2-4ac=6400-4*10*178=6400-7120=-720 - значит таких чисел, при которых уравнения меньше или равняется нулю нет.
Чтобы было понятнее и удобнее различать какое именно число дает остаток , сделаем небольшое различие в символах: Мы имеем: 1 случай: а : 7 = n (ост.2) = n +2/7 ⇒ a = 7n + 2; 2 случай: A : 7 = n(ост.4) = n+ 4/7 ⇒ A = 7n + 4; где n - неполное частное, число натурального ряда. Возведем наши числа в квадрат: а² = (7n + 2)² = 49n² + 28n + 4 = 7n(7n+4) + 4 A² = (7n + 4)² = 49n² + 56n + 16 = 7n(7n+8) + 16 Разделим квадраты чисел на 7: а² : 7 = n(n+4) + 4/7, A²: 7 = n(n+8) + 16/7 = [n(n+8) +2] + 2/7 (так как из неправильной дроби 17 можно выделить целую часть и прибавить ее к неполному частному: 16/7=2ц 2/7) Мы видим, что при делении а² на 7 остаток получается 4, а при делении А² на 7 остаток 2, значит, остаток в первом случае БОЛЬШЕ ( 4/7>2/7) ответ: при делении квадрата числа а на 7 остаток будет больше в случае, когда остаток от деления самого а на 7 меньше, те когда остаток от самого числа будет 2, а не 4. Правильный номер ответа: 1
Даже далекие от астрономии люди знают, что звезды имеют разный блеск. Наиболее яркие звезды без труда видны на засвеченном городском небе, а самые тусклые едва различимы при идеальных условиях наблюдения.
Для характеристики блеска звезд и других небесных светил (например, планет, метеоров, Солнца и Луны) ученые выработали шкалу звездных величин.
Видимая звездная величина (m; часто ее называют просто "звездная величина") указывает поток излучения вблизи наблюдателя, т. е. наблюдаемую яркость небесного источника, которая зависит не только от реальной мощности излучения объекта, но и от расстояния до него.
Это безразмерная астрономическая величина, характеризующая создаваемую небесным объектом вблизи наблюдателя освещенность.
Освещённость – световая величина, равная отношению светового потока, падающего на малый участок поверхности, к его площади.
Единицей измерения освещённости в Международной системе единиц (СИ) служит люкс (1 люкс = 1 люмену на квадратный метр), в СГС (сантиметр-грамм-секунда) – фот (один фот равен 10 000 люксов).
Освещённость прямо пропорциональна силе света источника света. При удалении источника от освещаемой поверхности её освещённость уменьшается обратно пропорционально квадрату расстояния (закон обратных квадратов).
Субъективно видимая звездная величина воспринимается как блеск (у точечных источников) или яркость (у протяженных).
При этом блеск одного источника указывают путем его сравнения с блеском другого, принятого за эталон. Такими эталонами обычно служат специально подобранные непеременные звезды.
Звездную величину сначала ввели как указатель видимого блеска звезд в оптическом диапазоне, но позже распространили и на другие диапазоны излучения: инфракрасный, ультрафиолетовый.
Таким образом, видимая звёздная величина m или блеск является мерой освещённости Е, создаваемой источником на перпендикулярной к его лучам поверхности в месте наблюдения.Исторически все началось более 2000 лет назад, когда древнегреческий астроном и математик Гиппарх (II век до нашей эры) поделил видимые глазом звезды на 6 величин.
Самым ярким звездам Гиппарх присвоил первую звездную величину, а самым тусклым, едва видимым глазом, – шестую, остальные равномерно распределил по промежуточным величинам. Причем, разделение на звездные величины Гиппарх произвел так, чтобы звезды 1-й величины казались настолько ярче звезд 2-й величины, насколько те кажутся ярче звезд 3-й величины и т. д. То есть от градации к градации блеск звезд изменялся на одну и ту же величину.