ΔABC - равнобедренный : AB = BC;
AC = 24 см; BK⊥AC; BK = 9 см
ВК - высота равнобедренного треугольника, она же и медиана ⇒
АК = КС = АС : 2 = 24 : 2 = 12 см
По теореме Пифагора из прямоугольного ΔВСК :
BC² = BK² + KC² = 9² + 12² = 225 = 15²
BC = 15 см ⇒ AB = BC = 15 см
Площадь треугольника АВС можно посчитать с трех разных формул
1) Через основание и высоту
см²
2) Через полупериметр и радиус вписанной окружности
27r = 108 ⇒ r = 108 : 27 = 4 см
3) Через 3 стороны и радиус описанной окружности
R = 12,5 см
ответ: радиус вписанной окружности r = 4 см;
радиус описанной окружности R = 12,5 см
Площадь треугольника BOK равна KB*KO/2 (так как BKO прямой)
Угол OBK=альфа/2, так как BO биссектриса
Если обозначить точки касания на сторонах AB и AC через L и M соответственно и рассмотреть треугольники образованные точками касания, соседними вершинами треугольника и центром окружности, то окажется, что есть пары равных треугольников, из чего следует, что LB=KB, KC=MC, MA=LA. Подставляя эти равенства в LA+LB+KB+KC+MC+MA=2p, получаем 2MC+2MA+2KB=2p, откуда MC+MA+KB=p. С другой стороны, MC+MA=AC=a, поэтому KB=p-a
Тогда из треугольника OBK OB=KB*tg(альфа/2)=(p-a)*tg(альфа/2)
Подставляя в формулу для площади получим
S=((p-a)^2*tg(альфа/2))/2