Представим, что число состоит из цифр a и b. (a - десятков и b - единиц)
получаем систему уравнений:
a^2+ab = 52
b^2+ab = 117
выразим ab из первого уравнения: ab=52-a^2
подставляем во второе уравнение:
b^2+52-a^2 = 117
b^2-a^2 = 117-52
b^2-a^2 = 65
Поскольку а и b это цифры , составляющие двузначное число, то они целые положительные однозначные числа,
из последнего равенства понятно, что b^2 должно быть больше или равно 65, значит b=9 (т.к. квадрат всех предыдущих цифр меньше 65)
теперь находим a:
81-a^2=65
a^2=81-65
a^2=16
a=4
таким образом искомое число 49
чтобы доказать, что это трапеция, нужно доказать, что ее основания параллельны, для этого располагаем фигуру в начале координат, у нас получаются координаты точек: А(0;0),В(0;3),С(3;4),D(6;2) . Потом замечаем, что если расположить вектор ВС в начале координат он будет равен вектор АD/2 , проверим: BC(3;1)=AD/2=(6/2;2/2), всё сходиться, наши основания параллельны, также 2 другие стороны должны быть не параллельны , отведем их от начала координат, у нас получится AB(0;3),CD(3;-2) ⇒ ABCD-трапеция
ч.т.д.
Если вам понравился ответ, не забудьте нажать кнопку Отметить мой ответ, как лучший и поставить 5 звезд!
27-24=3км/ч - скорость течения реки