Начертим отрезок TH. Отметим на нем точку L, которая является серединой этого отрезка. Проведем через эту точку прямую k – серединный перпендикуляр к отрезку TH. Выберем на этом перпендикуляре произвольно точку К.
Докажем, что отрезки TK и HK равны.
Доказательство.
Рассмотрим вариант, когда обе точки K и L совпадают. В таком случае отрезки TK и HK будут равны, так как отрезки TL и LH равны согласно условию.
Рассмотрим случай, когда обе точки K и L не совпадают.
Рассмотрим два треугольника – TLK и HLK. В этих треугольниках углы TLK и HLK прямые, так как прямая k является перпендикулярной относительно отрезка TH. Таким образом, рассматриваемые треугольники – прямоугольные.
Отрезки TL и HL – равны согласно условию, а отрезок LK является общим для них катетом. По одному из признаков равенства треугольников рассматриваемые треугольники TLK и HLK равны.
Очевидно, что если равны треугольники, то и соответствующие стороны в этих треугольниках также равны. Следовательно, отрезки TL и HL – равны.
Доказательство завершено.
Пошаговое объяснение:
Проведем из вершины В параллелограмма высоты ВК и ВН к сторонам АД и СД.
Так как у параллелограмма длины противоположных сторон равны, то АД = ВС = 18 см, СД = АВ = 12 см.
Применим формулу площади параллелограмма.
S = АД * ВК и S = СД * ВН.
S = 18 * ВК = 144.
ВК = 144 / 18 = 8 см.
Из прямоугольного треугольника МВК, по теореме Пифагора, определим длину гипотенузы МК.
МК2 = ВК2 + МВ2 = 82 + 122 = 64 + 144 = 208.
МК = 4 * √13 см.
S = СД * ВН.
S = 12 * ВН = 144.
ВК = 144 / 12 = 12 см.
Из прямоугольного треугольника МВН, по теореме Пифагора, определим длину гипотенузы МН.
МН2 = ВН2 + МВ2 = 122 + 122 = 144 + 144 = 228.
МН = 2 * √12 см.
ответ: Расстояния от точки M до прямой AД равно 4 * √13 см, до прямой CД равно 2 * √12 см.