М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
beresnevarseny
beresnevarseny
16.01.2020 12:54 •  Математика

2160 разделить на и плюс4996 равно 5000

👇
Ответ:
sohibjon457
sohibjon457
16.01.2020
2160:х+4996=5000
2160:х=5000-4996
2160:х=4
х=2160:4=540.
(проверка)
2160:4+4996=5000
ответ: х=4.
4,4(6 оценок)
Открыть все ответы
Ответ:
cvetok31maia
cvetok31maia
16.01.2020

Определим количество чисел, которые являются квадратом некоторого натурального числа. Натуральные числа начинаются с 1 и поэтому рассмотрим квадраты чисел 1², 2², ..., K²≤10¹². Тогда K = 10⁶, то есть 1000000 чисел, которые являются квадратом некоторого натурального числа.

Теперь определим количество чисел, которые являются кубом некоторого натурального числа. Рассмотрим кубы чисел 1³, 2³, ..., K³≤10¹². Тогда K = 10⁴, то есть 10000 чисел, которые являются квадратом некоторого натурального числа. Но среди них есть числа, которые учтены среди чисел, которые являются квадратом некоторого натурального числа. Например, 64=8²=4³. Определим их количество. Пусть некоторое число одновременно является квадратом некоторого натурального числа и кубом другого натурального числа, то есть a=n²=m³. Тогда для некоторого натурального числа с: a=с⁶. Поэтому рассмотрим 6-степени чисел 1⁶, 2⁶, ..., K⁶≤10¹². Тогда K = 10², то есть всего 100 чисел, которые одновременно является квадратом некоторого натурального числа и кубом другого натурального числа. Значит, 10000-100=9900  чисел можем учесть при подсчёте.

Далее, числа, которые являются четвёртой степенью некоторого натурального числа учтены при подсчёте чисел, которые являются квадратом некоторого натурального числа. Это следует из того, что если число a является четвёртой степенью некоторого натурального числа n, то a=n⁴=(n²)².

Наконец, можем определить количество чисел, которых мистер Фокс записывал в записную книжку:

1000000 + 9900 = 1009900.

4,8(87 оценок)
Ответ:
diana9996
diana9996
16.01.2020

10 квартир с суммой цифр 9.

Пошаговое объяснение:

Суммы цифр у квартир такие:

1 = 1, 10, 100

2 = 2, 11, 20

3 = 3, 12, 21, 30

4 = 4, 13, 22, 31, 40

5 = 5, 14, 23, 32, 41, 50

6 = 6, 15, 24, 33, 42, 51, 60

7 = 7, 16, 25, 34, 43, 52, 61, 70

8 = 8, 17, 26, 35, 44, 53, 62, 71, 80

9 = 9, 18, 27, 36, 45, 54, 63, 72, 81, 90

10 = 19, 28, 37, 46, 55, 64, 73, 82, 91

11 = 29, 38, 47, 56, 65, 74, 83, 92

12 = 39, 48, 57, 66, 75, 84, 93

13 = 49, 58, 67, 76, 85, 94

14 = 59, 68, 77, 86, 95

15 = 69, 78, 87, 96

16 = 79, 88, 97

17 = 89, 98

18 = 99

Как видим, больше всего номеров, 10, с суммой цифр 9.

4,6(53 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ