Обозначим меньшую сторону прямоугольника (ширину): х (м),
тогда большая сторона прямоугольника (длина): х + 6 (м)
Площадь прямоугольника: S = x · (x + 6).
Тогда, по условию:
х · (х + 6) = 72
х² + 6х - 72 = 0 D = b²-4ac = 36+288 = 324 = 18²
x₁₂ = (-b±√D)/2a
x₁ = -12 - не удовлетворяет условию
х₂ = 6 (м) - ширина площадки
х₂ + 6 = 6 + 6 = 12 (м) - длина площадки
Периметр площадки:
P = 2 · (6 + 12) = 36 (м)
Так как в одной упаковке материала для бордюра содержится 5 метров материала, то количество упаковок, которое необходимо купить:
N = 36 : 5 = 7,2
Количество упаковок не может быть дробным числом, поэтому необходимое количество упаковок: 8.
Примем за х кол-во деталей, кот . делает за час 2 рабочий.
первый делает х+3 детали
у первого уйдёт на заказ 340/(х+3) часов, у второго 340/х часов
у первого время на 3 часа меньше, составим уравнение:
340/х - 340/(х+3) = 3
(340(х+3) - 340х - 3 х(х+3) )= 0 (это числитель дроби, кот. получается при приведении к общему знаменателю, он равен нулю, при условии, что хне равен 0 и х не равен -3, ноэто невозможно по условию задачи
340х+1020-340х-3х^2-9x = 0
-3x^2-9x+1020 = 0
x^2+3x-340=0
D = 9+ 1360
D=1369
x= (-3+-37)/2
x= 17 или х=-20 (это невозможно по условию задачи)
ответ: 17 деталей делает 2 рабочий за час
150/30=5мин - тренер обойдёт бассейн
ответ 5 мин