Запишите выражение для периметра треугольника мнк и его , если а) мн = а см, нк на 30 см меньше мн , а км в 4 раза больше нм; б) мн = б см, нк на 12 см больше мн, а км в 2 раза больше нм.
Решение ищем по формуле Муавра-Лапласа. Обозначим р=0,1 (вероятность успеха) , n=500 (количество испытаний). Матожидание числа опытов М=n*p=500*0,1=50, дисперсия D=n*p*(1-p)=50*0,9=45. (50-10)/(45^0.5)>P>(50-7)/(45^0.5), то есть 6,41>P>5,963. Р=1/(6,28^0,5)интеграл в пределах от 5,963 до 6,41 exp(-x^2/2)=1,166*10^-9. Интеграл табличный, решается через табулированную функцию. Требуемые значения случайной величины выходят за границу 4* ско, поэтому значение вероятности и такое маленькое.
Пусть в корзине было х яблок. Сначала из нее взяли ¹/₃х-2, затем - ¹/₂(х-¹/₃х+2)+1 = ¹/₂(²/₃х+2)+1 = ¹/₃х+1+1 = ¹/₃х+2. И наконец взяли ¹/₄(х-¹/₃х+2-¹/₃х-2) = ¹/₄*¹/₃х = ¹/₁₂х. Зная, что при этом осталось 12 яблок, составляем уравнение: ¹/₃х-2+¹/₃х+2+¹/₁₂х+12=х ⁹/₁₂х+12=х х-³/₄х=12 ¹/₄х=12 х=48
Можно и по действиям. 1)1-¹/₄=³/₄ - яблок осталось, что составляет 12. 2) 12:³/₄=16 (яблок) - осталось после второго "взятия". 3) (16+1)*2=34 (яблока) - осталось после первого "взятия". 4) (34-2):²/₃=32*³/₂=48 (яблок) - было всего.
НК=МН-30=(а-30) см,
КМ=4НМ=4а см.
Р=МН+НК+КМ=а+а-30+4а=6а-30 (см)
б) МН=б см,
НК=МН+12=(б+12) см,
КМ=2НМ=2б см.
Р=МН+НК+КМ=б+б+12+2б=4б+12 (см)