Б) общий множитель у первой дроби 10, у второй 15, у третей 6. Общий знаменатель 30. В) общий множитель у первой дроби 12, у второй 9, у третей 8. Общий знаменатель 72
В данной формулировке задача не имеет однозначного решения.
Если представить примеры вариантов решений в виде набора чисел (цена дешевых алмазов; цена дорогих алмазов; кол-во дешевых у старшего; кол-во дорогих у старшего; кол-во дешевых у среднего; кол-во дорогих у среднего; кол-во дешевых у младшего; кол-во дорогих у младшего) То получим следующие, удовлетворяющие условию, наборы чисел: Вариант1 (1;21;42;8;21;9;0;10) Вариант2 (1;11;44;6;22;8;0;10) Вариант3 (1;6;48;2;24;6;0;10) Вариант4 (1;6;49;1;25;5;1;9) Вариант5 (1;5;50;0;25;5;0;10) и т.д. Желающие могут проверить что во всех вариантах общее количество алмазов 90, у старшего 50, у среднего 30 и у младшего 10. И при этом стоимость алмазов каждого из братьев одинаковая.
Из определения медианы следует, что значения первой половины чисел до медианы должны быть не больше ее значения (естественно, при расположении числового набора в порядке возрастания значений), а значения второй половины числового ряда — не меньше. Предположим, что первое убранное число находилось в первой половине ряда (для данной задачи — до числа №50, тогда медианой оставшихся чисел будет число №51 данного ряда. Если же убранное число принадлежало второй половине ряда, то медианой оставшихся чисел будет число №50, причём оно не больше, чем число №51. Тогда число №50 равно 38, а число №51 — 52. Таким образом, медиана всего набора (поскольку в наборе четное количество чисел) будет средним арифметическим: (38+52):2=45.