Используя формулу для нахождения периметра прямоугольника, выразите длину если а прямоугольника через его ширину b и периметр p. найдите а, если b и p соответственно равны: 1) 1 см и 8 см; 2) 2 см и 10 см.
Рассмотрим один из случаев распределения учеников по трём группам, например, на программировании. По крайней мере в одной группе будет не менее 10-ти человек, потому что если в каждой группе будет меньше десяти человек, то мы не сможем распределить 28 учеников по трём группам (28:3=9(1ост.). Тогда, при распределении по следующим трём группам по крайней мере четверо из десяти опять попадут вместе (10:3=3(1ост.). При третьем распределении по трём группам как минимум двое из четырёх гарантировано попадут в одну группу (4:3=1(1 ост.). Следовательно, минимум двое человек окажется вместе во всех трёх группах. Что и требовалось доказать.
Поставим каждому ученику в соответствие тройку чисел — номера групп, в которых он учится. Например, тройка (1, 3, 2) соответствует ученику, попавшему в первую группу по программированию, третью по английскому и вторую по физкультуре.
Заметим, что в тройке каждую цифру можно выбрать независимо из трёх различных вариантов, поэтому по правилу умножения существует всего 27 различных вариантов троек.
Различных троек не более 27, а учеников 28, поэтому по принципу Дирихле для каких-то двух учеников тройки обязаны совпасть. Это означает, что на всех трёх занятиях эти ученики были в одной группе.
Р = 2 * (а + в) = 2а + 2в,
а = (Р - 2в) / 2,
1)
а = (8 - 2*1) / 2 = (8 - 2) / 2 = 3 см,
2)
а = (10 - 2*2) / 2 = (10 - 4) / 2 = 3 см