М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
DashaShitova2006
DashaShitova2006
09.03.2021 02:19 •  Математика

А)0,3 в 4 степени; б) x в 3 степени при х=4 решите развёрнуто(можно фото) ,

👇
Ответ:
minskaya86
minskaya86
09.03.2021
0.3^4=0.0081
x³=4³=64
4,6(84 оценок)
Открыть все ответы
Ответ:
евгений258
евгений258
09.03.2021

Математика зародилась и активно развивалась у Древних Шумеров в междуречье, на месте будущей Персии и современного Ирака, одной из самой древнейшей из известных антропологам Цивилизаций вместе с Анатолийскими и Шумерскими языками, которые позже породили все европейские языки.

Примерно 6 000 лет назад (4 000 лет до Нашей Эры) шумеры уже использовали натуральные числа (1,2,3,4,5,6...) и действие сложения.

Позже стало использоваться и действие вычитания, как обратное сложению. Правда, у Шумеров не использовалось вычитание больших чисел из маленьких. Операция 3–7 считалась бессмысленной, поскольку не приводила ни к какому натуральному результату.

Примерно 5 000 лет назад (3 000 лет до Нашей Эры) в обиход стали входить действие умножения и деления. Эти действия, как и ранее, производились только над натуральными числами.

Не найдено никаких доказательств того, что у Шумеров была какая-то более менее цельная последовательная школа изучения математики. Знания и навыки оперирования арифметическими действиями передавались из уст в уста. Сама математика использовалась в торгово-менных операциях и в наблюдениях за периодичностью смены дней и лет. Ещё не было ни алгебры, ни механики.

Примерно 5 000 лет назад (3 000 лет до Нашей Эры) математические знания рас по всему аравийскому полуострову и набирающему силу Древнему Египту.

В Египте математические знания получили систематизацию. В обиход были введены дробные положительные числа. Примерно 3 500 лет назад (1 500 лет до Нашей Эры) появились первые упоминания об отрицательных числах в долговых обязательствах.

Четыре основные арифметические действия были известны, таким образом, уже 3 500–6 000 лет. Однако тогда эти действия обозначались словами, союзами или какими-то местными знаками, у разных народов по-разному.

Сам знак плюс «+» вошёл в обиход во времена раннего Возрождения, примерно в XV–XVI веке после опубликования работ известного математика-систематизатора и логика Франсуа Виета. Тогда же вошёл в употребление из знак тире «–» в качестве знака вычитания.

Знак умножения в виде диагонального креста «х» – использовался в английской математической школе в XV–XVII в.в. и тогда же получил рас Знак умножения в виде точки – использовался в немецкой математической школе в XV–XVII в.в., в частности на нём активно настаивал Лейбниц, как на общепризнанном математическом знаке.

Знак умножение в виде точки долгое время оставался только в высшей алгебре. В арифметике же во всём мире, включая и СССР, до 1940 года использовался знак диагонального креста «х», т.е. 2 умножить на 3 – записывалось, как « 2 х 3 ».

В послевоенные годы в СССР в школах стал активно использоваться знак Лейбница. Трудно сказать, произошло ли это из-за более высокого уровня преподавания математики и более частого обращения преподавателей к работам Лейбница или в силу банальной экономии карандашей, но уже в 50-е годы, большинство книг по арифметике для начальных классов, издаваемых в СССР, публиковались со знаком умножения Лейбница в виде точки.

В 60-е годы в средней школе во всех странах Мира постепенно перешли к обозначению умножения знаком Лейбница в виде точки. Исключением осталась Великобритания, в школах которой и по сей день умножение обозначается крестом.

Всё тоже самое можно сказать и о знаке деления. Косая или прямая черта – это английская школа. Двоеточие – это обозначение Лейбница. Позже в XVIII в. в английской школе было введено компромиссное обозначение деления в виде двоеточие с разделительной чертой « ÷ » .

Пошаговое объяснение:

4,4(86 оценок)
Ответ:
Подпишись1
Подпишись1
09.03.2021

Найдите (в см2) площадь S закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки 1 см \times 1 см (см. рис.). В ответе запишите S/{pi}.

Сначала найдем радиус  круга. Считаем клеточки, и получаем, что радиус равен 4.

Тогда площадь круга равна {pi}r^2=4^2{pi}=16{pi}

Заштрихованная фигура — это половина круга, и ее площадь равна S/2=8{pi}

В ответе записываем S/{pi}.

ответ: 8

2. Найдите (в см2) площадь S закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки 1 см \times 1 см (см. рис.). В ответе запишите S/{pi}.

Сначала найдем радиус  круга. Считаем клеточки, и получаем, что радиус равен 3.

Тогда площадь круга равна {pi}r^2=3^2{pi}=9{pi}

Найдем, какую часть заштрихованная фигура составляет от круга.

Мы видим, что заштрихованная фигура — это половина круга и еще одна четверть от половины, то есть одна восьмая.

1/2+1/8=5/8

Таким образом, площадь заштрихованной фигуры составляет 5/8 от площади круга.

S={5/8}*9{pi}=5,625{pi}

В ответе записываем S/{pi}.

ответ: 5,625

Пошаговое объяснение:

4,4(92 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ